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Preface

We were pleasantly surprised by the ready acceptance of the first edition of
our book by the CFD community and by the amount of positive feedback
received over a period of 10 years. To us this has provided justification of
our original plan, which was to provide an accessible introduction to this
fast-growing topic to support teaching at senior undergraduate level, post-
graduate research and new industrial users of commercial CFD codes. Our
second edition seeks to enhance and update. The structure and didactic
approach of the first edition have been retained without change, but aug-
mented by a selection of the most important developments in CFD.

In our treatment of the physics of fluid flows we have added a summary
of the basic ideas underpinning large-eddy simulation (LES) and direct
numerical simulation (DNS). These resource-intensive turbulence predic-
tion techniques are likely to have a major impact in the medium term on
CFD due to the increased availability of high-end computing capability.

Over the last decade a number of new discretisation techniques and
solution approaches have come to the fore in commercial CFD codes. To
reflect these developments we have included summaries of TVD techniques,
which give stable, higher-order accurate solutions of convection—diffusion
problems, and of iterative techniques and multi-grid accelerators that are
now commonly used for the solution of systems of discretised equations. We
have also added examples of the SIMPLE algorithm for pressure—velocity
coupling to illustrate its workings.

At the time of writing our first edition, CFD was firmly established in the
aerospace, automotive and power generation sectors. Subsequently, it has
spread throughout engineering industry. This has gone hand in hand with
major improvements in the treatment of complex geometries. We have
devoted a new chapter to describing key aspects of unstructured meshing
techniques that have made this possible.

Application of CFD results in industrial research and design crucially
hinges on confidence in its outcomes. We have included a new chapter on
uncertainty in CFD results. Given the rapid growth in CFD applications it
is difficult to cover, within the space of a single introductory volume, even a
small part of the submodelling methodology that is now included in many
general-purpose CFD codes. Our selection of advanced application material
covers combustion and radiation algorithms, which reflects our local perspec-
tive as mechanical engineers with interest in internal flow and combustion.

Finally, we thank colleagues in UK and overseas universities who have
encouraged us with positive responses and constructive comments on our
first edition and our proposals for a second edition. We are also grateful to
several colleagues and postgraduate researchers who have given help in the
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development of material, particularly Dr Jonathan Henson, Dr Mamdud
Hossain, Dr Naminda Kandamby, Dr Andreas Haselbacher, Murthy
Ravikanti-Veera and Anand Odedra.

August 2006 H.K. Versteeg
Loughborough W. Malalasekera
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Chapter one Introduction

What is CFD?

I
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Computational fluid dynamics or CFD is the analysis of systems involving
fluid flow, heat transfer and associated phenomena such as chemical reactions
by means of computer-based simulation. The technique is very powerful and
spans a wide range of industrial and non-industrial application areas. Some
examples are:

* aerodynamics of aircraft and vehicles: lift and drag

* hydrodynamics of ships

* power plant: combustion in internal combustion engines and gas
turbines

* turbomachinery: flows inside rotating passages, diffusers etc.

* electrical and electronic engineering: cooling of equipment including
microcircuits

* chemical process engineering: mixing and separation, polymer moulding

* external and internal environment of buildings: wind loading and

heating/ventilation

marine engineering: loads on off-shore structures

environmental engineering: distribution of pollutants and effluents

hydrology and oceanography: flows in rivers, estuaries, oceans

meteorology: weather prediction

biomedical engineering: blood flows through arteries and veins

From the 1960s onwards the aerospace industry has integrated CFD tech-
niques into the design, R&D and manufacture of aircraft and jet engines.
More recently the methods have been applied to the design of internal
combustion engines, combustion chambers of gas turbines and furnaces.
Furthermore, motor vehicle manufacturers now routinely predict drag forces,
under-bonnet air flows and the in-car environment with CFD. Increasingly
CFD is becoming a vital component in the design of industrial products and
processes.

The ultimate aim of developments in the CFD field is to provide a
capability comparable with other CAE (computer-aided engineering) tools
‘such as stress analysis codes. The main reason why CFD has lagged behind
is the tremendous complexity of the underlying behaviour, which precludes
a description of fluid flows that is at the same time economical and sufficiently
complete. The availability of affordable high-performance computing hard-
ware and the introduction of user-friendly interfaces have led to a recent
upsurge of interest, and CFD has entered into the wider industrial commun-
ity since the 1990s.
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We estimate the minimum cost of suitable hardware to be between £5,000
and £10,000 (plus annual maintenance costs). The perpetual licence fee for
commercial software typically ranges from £10,000 to £50,000 depending on
the number of ‘added extras’ required. CFD software houses can usually arrange
annual licences as an alternative. Clearly the investment costs of 2 CFD cap-
abilityarenotsmall,butthetomlexpmseisnotnqwmallyasgreatasthatofa
high-quality experimental facility. Moreover, there are several unique advant-
ages of CFD over experiment-based approaches to fluid systems design:

* substantial reduction of lead times and costs of new designs

* ability to study systems where controlled experiments are difficult or
impossible to perform (e.g. very large systems)

* ability to study systems under hazardous conditions at and beyond their
normal performance limits (e.g. safety studies and accident scenarios)

* practically unlimited level of detail of results

The variable cost of an experiment, in terms of facility hire and/or person-
hour costs, is proportional to the number of data points and the number
of configurations tested. In contrast, CFD codes can produce extremely large
volumes of results at virtually no added expense, and it is very cheap to per-
form parametric studies, for instance to optimise equipment performance.

Below we look at the overall structure of a CFD code and discuss the
role of the individual building blocks. We also note that, in addition to a
substantial investment outlay, an organisation needs qualified people to run
the codes and communicate their results, and briefly consider the modelling
skills required by CFD users. We complete this otherwise upbeat section by
wondering whether the next constraint to the further spread of CFD amongst
the industrial community could be a scarcity of suitably trained personnel
instead of availability and/or cost of hardware and software.

‘ mngzg CFD codes are structured around the numerical algorithms that can tackle
\ fuid flow problems. In order to provide easy access to their solving power
all commercial CFD packages include sophisticated user interfaces to input
problem parameters and to examine the results. Hence all codes contain three
main elements: (i) a pre-processor, (i) a solver and (iii) a post-processor. We
briefly examine the function of each of these elements within the context of
a CFD code.

Pre-processor

Pre-processing consists of the input of a flow problem to a CFD program by
means of an operator-friendly interface and the subsequent transformation
of this input into a form suitable for use by the solver. The user activities at
the pre-processing stage involve:

* Definition of the geometry of the region of interest: the computational
domain

* Grid generation ~ the sub-division of the domain into a number
of smaller, non-overlapping sub-domains: a grid (or mesh) of cells
(or control volumes or elements)

* Selection of the physical and chemical phenomena that need to be
modelled
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+ Definition of fluid properties o
+ Specification of appropriate boundary conditions at cells which coincide

with or touch the domain boundary

The solution to a flow problem (velocity, pressure, temperature etc.) is defined
at nodes inside each cell. The accuracy of a CFD solution is governed by the
number of cells in the grid. In general, the larger the number of cells, the
better the solution accuracy. Both the accuracy of a solution and its cost in
terms of necessary computer hardware and calculation time are dependent
on the fineness of the grid. Optimal meshes are often non-uniform: finer in
areas where large variations occur from point to point and coarser in regions
with relatively little change. Efforts are under way to develop CFD codes
with a (self-)adaptive meshing capability. Ultimately such programs will auto-
matically refine the grid in areas of rapid variations. A substantial amount
of basic development work still needs to be done before these techniques are
robust enough to be incorporated into commercial CFD codes. At present
it is still up to the skills of the CFD user to design a grid that is a suitable
compromise between desired accuracy and solution cost.

Over 50% of the time spent in industry on a2 CFD project is devoted to
the definition of the domain geometry and grid generation. In order to max-
imise productivity of CFD personnel all the major codes now include their
own CAD-style interface and/or facilities to import data from proprietary
surface modellers and mesh generators such as PATRAN and I-DEAS.
Up-to-date pre-processors also give the user access to libraries of material
properties for common fluids and a facility to invoke special physical and
chemical process models (e.g. turbulence models, radiative heat transfer,
combustion models) alongside the main fluid flow equations.

Solver

There are three distinct streams of numerical solution techniques: finite
difference, finite element and spectral methods. We shall be solely concerned
with the finite volume method, a special finite difference formulation that is
central to the most well-established CFD codes: CFX/ANSYS, FLUENT,
PHOENICS and STAR-CD. In outline the numerical algorithm consists of
the following steps:

« Integration of the governing equations of fluid flow over all the (finite)
control volumes of the domain

» Discretisation — conversion of the resulting integral equations into a
system of algebraic equations

* Solution of the algebraic equations by an iterative method

The first step, the control volume integration, distinguishes the finite volume
method from all other CFD techniques. The resulting statements express
the (exact) conservation of relevant properties for each finite size cell. This
clear relationship between the numerical algorithm and the underlying
physical conservation principle forms one of the main attractions of the finite
volume method and makes its concepts much more simple to understand by
engineers than the finite element and spectral methods. The conservation
of a general flow variable ¢, e.g. a velocity component or enthalpy, within
a finite control volume can be expressed as a balance between the various
processes tending to increase or decrease it. In words we have:
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Problem solving

‘with CFD

Net rate of Net rate of

Rate.of change increase of in of Net rate of
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control volume | = convection into | * | diffusion into | * § nside the

With respect the control " | the control

time volume
volume - volume

CFD codes contain discretisation techniques suitable for the treatment of
the key transport phenomena, convection (transport due to fluid flow) and
diffusion (transport due to variations of ¢ from point to point) as well as for
the source terms (associated with the creation or destruction of ¢) and the
rate of change with respect to time. The underlying physical phenomena
are complex and non-linear so an iterative solution approach is required.
The most popular salution procedures are by the TDMA (tri-diagonal
matrix algorithm) line-by-line solver of the algebraic equations and the
SIMPLE algorithm to ensure correct linkage between pressure and velocity.
Commercial codes may also give the user a selection of further, more
recent, techniques such as Gauss—Seidel point iterative techniques with
multigrid accelerators and conjugate gradient methods.

Post-processor

As in pre-processing, a huge amount of development work has recently taken
place in the post-processing field. Due to the increased popularity of engin-
eering workstations, many of which have outstanding graphics capabilities,
the leading CFD packages are now equipped with versatile data visualisation
tools. These include:

Domain geometry and grid display

Vector plots

Line and shaded contour plots

2D and 3D surface plots

Particle tracking

View manipulation (translation, rotation, scaling etc.)
Colour PostScript output .

More recently these facilities may also include animation for dynamic result
display, and in addition to graphics all codes produce trusty alphanumeric
output and have data export facilities for further manipulation external to the
code. As in many other branches of CAE, the graphics output capabilities
of CFD codes have revolutionised the communication of ideas to the non-
specialist.

o R Ay . GO

In solving fluid flow problems we need to be aware that the underlying
physics is complex and the results generated by a CFD code are at best as
good as the physics (and chemistry) embedded in it and at worst as good as
its operator. Elaborating on the latter issue first, the user of a code must have
skills in a number of areas. Prior to setting up and running a CFD simula-
tion there is a stage of identification and formulation of the flow problem in
terms of the physical and chemical phenomena that need to be considered.
Typical decisions that might be needed are whether to model a problem in
two or three dimensions, to exclude the effects of ambient temperature
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or pressure variations on the density of an air flow, to choose to solve the
turbulent flow equations or to neglect the effects of small air bubbles dis-
solved in tap water. To make the right choices requires good modelling
skills, because in all but the simplest problems we need to make assumptions
to reduce the complexity to a manageable level whilst preserving the salient
features of the problem at hand. It is the appropriateness of the simplifica-
tions introduced at this stage that at least partly governs the quality of the
information generated by CFD, so the user must continually be aware of all
the assumptions, clear-cut and tacit ones, that have been made.

Performing the computation itself requires operator skills of a different
kind. Specification of the domain geometry and grid design are the main
tasks at the input stage and subsequently the user needs to obtain a success-
ful simulation result. The two aspects that characterise such a result are
convergence and grid independence. The solution algorithm is iterative in
nature, and in a converged solution the so-called residuals — measures of the
overall conservation of the flow properties — are very small. Progress towards
a converged solution can be greatly assisted by careful selection of the set-
tings of various relaxation factors and acceleration devices. There are no
straightforward guidelines for making these choices since they are problem
dependent. Optimisation of the solution speed requires considerable experi-
ence with the code itself, which can only be acquired by extensive use. There
is no formal way of estimating the errors introduced by inadequate grid
design for a general flow. Good initial grid design relies largely on an insight
into the expected properties of the flow. A background in the fluid dynamics
of the particular problem certainly helps, and experience with gridding of
similar problems is also invaluable. The only way to eliminate errors due
to coarseness of a grid is to perform a grid dependence study, which is a
procedure of successive refinement of an initially coarse grid until certain
key results do not change. Then the simulation is grid independent. A sys-
tematic search for grid-independent resuits forms an essential part of all
high-quality CFD studies.

Every numerical algorithm has its own characteristic error patterns. Well-
known CFD euphemisms for the word ‘error’ are terms such as numerical
diffusion, false diffusion or even numerical flow. The likely error patterns
can only be guessed on the basis of a thorough knowledge of the algorithms.
At the end of a simulation the user must make a judgement whether the
results are ‘good enough’. It is impossible to assess the validity of the models
of physics and chemistry embedded in a program as complex as a CFD code
or the accuracy of its final results by any means other than comparison with
experimental test work. Anyone wishing to use CFD in a serious way must
realise that it is no substitute for experimentation, but a very powerful
additional problem solving tool. Validation of a CFD code requires highly
detailed information concerning the boundary conditions of a problem, and
generates a large volume of results. To validate these in a meaningful way it
is necessary to produce experimental data of similar scope. This may involve
a programme of flow velocity measurements with hot-wire anemometry,
laser Doppler anemometry or particle image velocimetry. However, if the
environment is too hostile for such delicate laboratory equipment or if it is
simply not available, static pressure and temperature measurements com-
plemented by pitot-static tube traverses can also be useful to validate some
aspects of a flow field.

Sometimes the facilities to perform experimental work may not (yet)
exist, in which case the CFD user must rely on (i) previous experience,



