NONLINEAR

PHYSICAL
SCIENCE

INonlinrmmr
DEfOimame-bOdy

Dynamics
KM 113

L= & = ‘i
| ekl



Albert C.J. Luo

Nonlinear
Deformable-body
Dynamics

R ARTEAR ) ) 2%

Feixianxing Bianxingti Donglixue

With 63 figures, 4 of them in color

T B o 8 E AR - bR

HIGHER EDUCATION PRESS  BEWING



Author

Albert C.J. Luo

Department of Mechanical and Industrial Engineering
Southern Illinois University Edwardsville
Edwardsville, IL 62026-1805, USA

E-mail: aluo@siue.edu

(© 2010 Higher Education Press, 4 Dewai Dajie, 100120, Beijing, P.R. China

BHBERSEE (CIP) Biim

e LA A& 3) J12 = Nonlinear Deformable-body
Dynamics: 23 / ZFEARE. —Itm: BEHFHMN
#t, 20104
(ELEWERY /1 FEHE, (Fi) Pfhiits
FKEGH )
ISBN 978-7-04—-028882~7

[.OF--- 0. OF---I. OFEKHEN¥: shh¥r—
XX N. ©o322

o E A B B CIP Bl % (2010) 58 034486 S

RUFE Iw¥ RERE w¥  HERT B
PUEEDH Bk

HAREIT RSB L ' WH ALK  010-58581118
4 JEETEREESAE 45 %3 FH 400-810-0598
HBELH#RES 100120 ¢ 3 it http://www.hep.edu.cn
S\ ¥l 010-58581000 http://www.hep.com.cn
M EITM  htp://www.landraco.com
@ % BeBEEBRTERAT http://www.la.ndraco.com.cn
£ Bl MR W ERA B A BGEHHE hup//www.widedu.com
H A 787 x 1092 1/16 hR X 2010 4 A 1R
En gk 25.25 £p W 20105 4 HE 1 )RENR
¥ ¥ 350000 ¥ f#tr  78.00 7t

ABWAGT, BT, BRSRREAE, H250E S HERTRARSR,
WAURE R
YIS 28882-00

Sales only inside the mainland of China
{AURR H B R X A )



\\ Forze §§§\§§Q QNEQ Forew \\yw\\.\ww \m§\§Q§§m ) prer \\Q@Q&“\W\




Preface

Deformable-body dynamics is a subject to investigate the states of strains and in-
ternal relative motions in deformable solids subject to the action of external
forces. This is an old and interesting topic, and many problems still are unsolved
or solved incompletely. Rethinking such problems in this topic may bring new vi-
tal to the modern science and technology. The first consideration of the nature of
the resistance of deformable-bodies to rupture was given by Galileo in 1638. The
theory of deformable-bodies, started from Galileo’s problem, is based on the dis-
covery of Hooke’s Law in 1660 and the general differential equations of elasticity
by Navier in 1821. The Hooke’s law is an experimental discovery about the stress
and strain relation. This law provides the basis to develop the mathematical theory
of deformable bodies. In 1821, Navier was the first to investigate the general
equations of equilibrium and vibration of elastic solids. In 1850, Kirchhoff pro-
posed two assumptions: (i) that linear filaments of the plate initially normal to the
middle-surface remain straight and normal to the middle-surface after deformed,
and (ii) that all fibers in middle surface remain unstretched. Based on the
Kirchhoff assumptions, the approximate theories for beams, rods, plates and shells
have been developed for recent 150 years. From the theory of 3-dimensional de-
formable body, with certain assumptions, this book will present a mathematical
treatise of such approximate theories for thin deformable-bodies including cables,
beams, rods, webs, membranes, plates and shells. The nonlinear theory for de-
formable body based on the Kirchhoff assumptions is a special case to be dis-
cussed. This book consists of eight chapters. Chapter 1 discusses the history of the
deformable body dynamics. Chapter 2 presents the mathematical tool for the de-
formation and kinematics of deformable-bodies. Chapter 3 addresses the deforma-
tion geometry, kinematics and dynamics of deformable body. Chapter 4 discusses
constitutive laws and damage theory for deformable-bodies. In Chapter 5, nonlin-
ear dynamics of cables is addressed. Chapter 6 discusses nonlinear plates and
waves, and the nonlinear theories for webs, membranes and shells are presented in
Chapter 7. Finally, Chapter 8 presents the nonlinear theory for thin beams and
rods.

The purpose to write this book is to answer a question from Professor Huancun
Sun (my thesis advisor) during my master thesis defense in 1990. In my master
thesis, I considered the higher order terms to correct the strains in the von Karman
plate theory. However, such a correction did not consider curvature effects on the
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balance equations. Professor Sun asked me what is the error compared to the exact
theory of the 3-dimensional deformable bodies. After about 20 years, 1 believe that
I can give an appropriate answer to his question. In fact, after my thesis defense, 1
almost place such a question away. However, in 1996, I worked with Professor
C.D. Mote, Jr. at UC Berkeley on nonlinear dynamical behaviors of high speed ro-
tating disks in disk drives. Such a problem drove me to rethink about the accurate
plate theory. To express my indebtedness to both of them for their guidance and
advice, this book is my presence for the 80" birthday of Professor Sun and the 70"
birthday of Professor Mote, Jr.. This book is also dedicated to my friend and col-
league, Professor Zhongheng Guo. His book on Nonlinear Elasticity stimulated
my research interest in nonlinear deformable solids 25 years ago. His book was an
excellent book for graduate students. Some inspirations of this book originated
from the book of Nonlinear Elasticity. In addition, I would like to thank Professor
Youjin Che for lending his books “Tensor Analysis” and “Variational Principles”
to me during my sophomore year in 1981. After almost 30 years, I cannot find
both of books to return to him. I sincerely hope this book can bring my apology
and appreciation to him.

Herein, I would like to thank my wife (Sherry X. Huang) and my children
(Yanyi Luo, Robin Ruo-Bing Luo, and Robert Zong-Yuan Luo) for their toler-
ance, patience, understanding and support.

Albert C.J. Luo
Edwardsville, Illinois



Contents

Chapter 1 Introduction 1
1.1. Deformable-body dynamiics « - swsserremessssmmmmssssssissssssssssss e 1
1. 1 . 1 . Cable dynamics .................................................................................... 2
112 Beams and rOdS .................................................................................... 4
1.1.3. Plates and Shell s -serseremssrmsssssmstnssesmsssisssmss st 7
114, SOEt WEbS wreeeereressesrmrsressssss s st s 9
1.2, BOOK LayOut - eresssseresssrmommsssssssssssssss s 11
REFETEIICES ++++ -+ +resrmrrssessses s L L s 12
Chapter 2 Tensor Analysis 19
3 1. VectorS and LEISOTS «+-rsr-ssrrsssersssesstesssessssinssenisssims s s 19
2.1.1. VECtor @lgebrar s - wwssemsssmrmsssmssssssssssisess st 19
1.2, Base vectors and MELric tenSors s swessrerssmmmssussssssssssssnnsessecess 21
2.1.3. Local base vector tranSfOrmation -+« s« swssrmssumssssssssssonsesnaseeess 27
2.1.4. TENSOT Algebrar -« erssewsserossersssrmmssrssssssssiss s 31
0. SECONA-OFAET TEMISOES s+ rrsrersssersssirsssssssessst it 41
2.2.1. Second-0rder tensor algebra -+ wwssseesssremssemmmsrris s 42
2.2.2. BASIC PrOPEItiEs:++ersrersssrerssemesssssssstsmssstasssirem st 46
2.2.3. TensOr dECOMPOSIHONS wrovr reesesssererssssssssmmssssssssasss s 48
29 4. TENSOr FUNCHONS -++sweressresessserssrmmssisssm sttt 50

D 3. TENSOT CALCULLIS +++w+wsrerreresssrsssersesrsesssirisst sttt 51
231, DIFfrentiation -+ seseereressessermsuims sttt 51
2.3.2. Invariant differential operators and integral theorems -+ 57

2 3.3, Riemann-Christoffel CUTVAtUTe teNSOrs «+- - wwsswessswsssusmsserssisssrnseeeses 60
2.4, TWO-POInt tenSOr flelds --w-sreremsssssmmsssrramssetsmsssssnems s 62
2.4.1. TWO-POINE LEISOLS ++--er reesssrsssssstsesrsistamsssssimss st 63
2.4.2. Independent coordinates .................................................................... 64
2.4.3. Correlated COOTAINALES +rrrrreerrersessersrssrnmmrrresser e irsesesiannnscsann s 65

2 4.4, Shifter tensOr flelds - wrserrsreessressressimmsssmss sty 68

REECTEIICES -+ -+ +++#7eereseressnssrrsers s 73



X Contents

Chapter 3 Deformation, Kinematics and Dynamics 75
3.1, DefOrmAtion GEOMIELry - -+ -ssrosssesssrmstsssssssiamsssims st 75
3 1.1. Curvilinear COOTAinates -+« -+ =ssssesesmrmsmmassnsustssssessscussisisssmsseseas 76
3.1.2. Deformation gradient and tensors -+ -sssesswesssererscseerssesnsnesess 20
3.1.3. Green-Cauchy strain tensors and engineering strain =« 88
3.1.4. Principal strains and directions = 95
3.0, KUMEIIALICS -+ v wewsreressssestesssersrsestssesus bttt 101
3.2.1. Material derivatives - st 101
3.2.2. Strain FALES w+rrerermmemmnrsnsesn et nstrate sttt e 113
3.3, DYRAMICS e reeesssrreessssorsms s 116
3.3.1. FOrces and SLrESSEs ---+-wrrrronerssrrassesantaesmsasssinnntnsisntss s sy 116
3.3.2. Transport LREOTEILL -+vveerrrrenresersenseessssanmnntnmmints sttt bt 117
3.3.3. Cauchy stress and couple—stress LEIIGOTLS - rerereereerrennesnssrmssannnnnasnsanaans 120
3.4, ENEIZY CONSEIVAtION r-eservsssesssrissssssssmmssasssenssiss s 130
References ...................................................................................................... 1 33
Chapter 4 Constitutive Laws and Damage Theory 135
4.1. Constitutive equations ............................................................................. 135
4.2. Material damage and effoctive stress: s 144
4.3. BQUIVAlence Principles: s w-rreeersssrmersssssinimss s 146
4.4. An anisotropic damage theory ................................................................. 153
4.5, APPHCALIONS: ++eeresssreessssrmomssssssss s 156
4.5.1. Uniaxial tensional models - ---sswsseesseessemssessemsimismsinssissssseeses 156
4.5.2. PULE LOFSIO ++++wrwsrerrrressraresssrssssssst s s st ss sttt 157
4.5.3. Elastic perfectly-plastic materials «---reswmsssrsisremsssssessonneenss 159
References ...................................................................................................... 1 60
Chapter 5 Nonlinear Cables 161
5.1. A nonlinear theory of Cables: - wrsreusssrmmmsmmmmntssssas s e 161
5.2. Traveling and rotating cables «ssseremwsssrrssssesssss e 168
5.3. Equilibrium of traveling elastic cables - 175
5.3.1. EXISTENCe CONAIEIONS -+ wereressererssssesemmmsssammssmsssssis st 175
5.3.2. DISPIACEIMENES ++ rreerrersseromssmsmssssssssinssstons s s 177
5.33. Applications .................................................................................... 178
5.4. Nonlinear dynamics OF Cables «+-srersrrerseressreniitries st 188
54.1. Equations OF TIIOTIONL +++veeveseermrmsmssmresnsssmsssimri sttt 190
5.4.2. Motions of inextensible cableg: - wwessrersrmsmsmursisssssssnssssisees 192
5.4.3. Motions of deformable cables: s swrerseersesmmasessmmismssnisssssissssneens 196
REFEIEIICES #++++e+++ersreresersrsensssssastasa st 198
Chapter 6 Nonlinear Plates and Waves 201
6.1. A nonlinear theory of plates -wsvereessseeresss e s 201
6.1.1. Deformation of @ 3-D bodly -« eweesersrsmmrmasessusisssssssennneses s 201
6.1 2. Strains in thin plates ......................................................................... 204

6.1.3. Equations of motion ......................................................................... 207



Contents xi
6. 1 4 Reduction to established thCOI'iCS ..................................................... 210

6.2. Waves in traveling Plates -« weressemsmmssmmssmsssisssti e 213
6.2.1. AN @PPrOXIMALe thEOry =+ e eerrrsssmsssssssmssiess st 213

622 Perturbation analysis ........................................................................ 2 1 7

623 Static PVQVES orereresseressssnmserirm ittt ittt L e 222

6.2.4. NONIINEAT WAVES #++rereerrerserssrsmssmsmmmtssssstem s sttt 224

6.2.5 CHAOLIC WAVES +++-+errrrrmressrsres ittt 232

6_3. Waves in rotating diSkS ........................................................................... 239
631 Equations Of motions ....................................................................... 239

6.3.2. NONIIIGAL WAVES -+ ++r+rrsteesssesmsseresiusssmmssta it sttt sttt s 247

6.3.3_ Resonant a_nd stationary PVAVES soeteresessseertnmnrrssastiiiiiitiiiiisiitiana. 256

6.4, CONCIUSIONS +re++++r+ssveremssrsamestestsr e sttt e 261
RELEIEICES +++r+erersrseerersremerer st st st e i n e a et 262
Chapter 7 Nonlinear Webs, Membranes and Shells 265
7.1, NONLINEAL WEBS #++++++rerersrerstereasermsnsmstmitaas e eb ettt et e 265
7.1.1. Cable-network Webs «+++«+sesssrssstrrmsmrmmnitis ittt 269

7.1.2. Cable-fabric Webs - -rrrrerrrererrmeistirei et 273

7.1.3. CONLINUUIN WEDS «+r+e+rrereressramsserssssssmsetsri sttt 278

7 2 NONIINEAT INEINDIAIIES <+ +++++++-esrerererststessmanmanartanairat st 283
7.2.1. A membrane theory based on the Cartesian coordinates -+« 285

7.2.2. A membrane theory based on the curvilinear coordinates ===+ 287

7.3, NONTNEAL ShEllg--+srsessersererseresssmsermimiiniiintees et 293
7.3.1. A shell theory based on the Cartesian coordinates «--=--seseereeees 295

7.3.2. A shell theory based on the curvilinear coordinates «-«-+--ssrerereeees 306
RELEIEIICES *revwerrrrernnrrensnnnssensnnniarereterats et 315
Chapter 8 Nonlinear Beams and Rods 317
8.1. Differential gEOMEtry Of CUIVES s+ rersssrersssssesssseomsssicosssens i seens 317
8.2. A nonlinear theory of straight DEATIS wrerrrrmrreerrsremmnnninsnininiararsanaisiiaeesen 321
8.3 Nonlinear curved DEamIs -+ -+ xerermstserinmmterat et 329
8.3.1. A nonlinear theory based on the Cartesian coordinates -+« 331

8.3.2. A nonlinear theory based on the curvilinear coordinates: <=« 337

8.4. A nonlinear theory of straight TOQS reerrrrrermrnrnrsini s 3472
8.5. NONINEATr CUFVEd TOAS rrosesrererresssesemrmimiieints sttt e 357
8.5.1. A curved rod theory based on the Cartesian coordinates:«=:«---=-+= 358

8.5.2. A curved rod theory based on the curvilinear coordinates::----=-- 369
References ...................................................................................................... 380
Subject Index 383




Chapter 1
Introduction

To investigate deformable-body dynamics, it is very important to learn a devel-
opment history of the mathematical theory of deformable solids. From such a de-
velopment history, one can find how the deformable-body dynamics to stimulate
the development of modern physical science, which will give people a kind of in-
dication for new discoveries. In this chapter, a brief history for establishing the
approximate theories of deformable solids will be given. Especially, the cable dy-
namics will be discussed first, and a mathematical treatise of nonlinear beams and
rods will be presented. In addition, the past and current status of plates and shell
theory will be discussed, and the current status of soft web theory and applications
will be presented. Finally, the book layout will be presented, and a brief summari-
zation for each chapter will be given.

1.1. Deformable-body dynamics

Deformable-body dynamics is a subject to investigate the states of strain and in-
ternal relative motions in deformable solids subject to the action of the external
forces. The first consideration of the nature of the resistance of solids to rupture
was given by Galileo (1638). He treated the deformable body as inelastic without
any laws and hypotheses between the displacement and forces. Galileo studied the
resistance of a beam clamped at one end into the wall under its own weight or ap-
plied weight. He concluded that the beam rotates about the axis perpendicular to
its length and in the plane of the wall. The determination of this axis is known as
the Galileo’s problem. The theory of deformable-bodies started from the Galileo’s
problem is based on the discovery of Hooke’s Law in 1660 and the general differ-
ential equations of elasticity by Navier in 1821. The Hooke’s law (Hooke, 1678) is
an experimental discovery about the stress and strain relation. This law provides
the basis to develop the mathematical theory of deformable-bodies. In 1821, Na-
vier was the first to investigate the general equations of equilibrium and vibration
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of elastic solids, as presented in Love (1944). Although equilibrium and vibrations
of plates and shells were treated before the general theory of elasticity was devel-
oped, one was interested in reduction of the general theory of elasticity to the the-
ory of plates and shells by the power series of the distance from the middle sur-
face. The problem is that the resultant forces and moments at the edge must be
equal to the internal forces and moments generated by the strain. However, too
many unknowns cannot be solved. Kirchhoff (1850a,b) proposed two assump-
tions: (i) that linear filaments of the plate initially normal to the middle-surface
remain straight and normal to the middle-surface after deformed, and (ii) that all
fibers in middle surface remain unstretched. Independent of the general equation
of elasticity, the theory of the bending and twisting of thin rods and wires was de-
veloped by methods akin to those employed by Euler. One thought how to connect
the general theory of elasticity to the theory of thin rods. Kirchhoff (1859) pointed
out that the general equations of elasticity are strictly applicable to any small por-
tion of a thin rod if all the linear dimensions of the portion are of the same order of
magnitude as the diameters of the cross section. The equation of motion for such a
portion of the rod could be simplified from the first approximation of deformation
and kinematics. Based on the Kirchhoff assumptions, the approximate theories for
beams, rods, plates and shells have been developed for recent 150 years. From 3-
dimensional deformable body theory, with certain assumptions, this book will pre-
sent a mathematic frame to develop such approximate theories for thin deform-
able-bodies including cables, beams, rods, webs, membranes, plates and shelis.
The theory for deformable body based on the Kirchhoff assumptions is a special
case to be discussed. In this chapter, the development history for the theory of
nonlinear cable dynamics will be discussed first.

1.1.1. Cable dynamics

Cables are used as one of the simplest structures for human being at least thou-
sands of years. The cable configuration attracted scientists to investigate since it
was used for the suspension bridge in the early human-being history. Based on the
historical record, the sophisticated suspension bridges in China appeared before
the start of the Christian era. The iron chain suspension bridge was built in Yun-
nan, China in A.D. 65 in Needham (1954). In 1586, Stevin established the triangle
forces experimentally with loaded string to understand the catenary and the col-
lapse mechanism in a voussoir arch, as reported in Hopkins (1970). From Trues-
dell (1960), Beeckman, in 1615, for the first time solved the suspension bridge
problem that the configuration of hanged cables with the in-plane, uniformly dis-
tributed loading is a parabolic arc. Galileo mused on the shape of a hanging chain
and concluded that it is parabolic primarily by analogy to the flight of a projectile,
which was published in Discourse on Two New Sciences in 1638. However, it was
proved that this view was incorrect as Bernoullis (James and John), Leibnitz and
Huygens jointly discovered the catenary in Truesdell (1960). To solve the cate-
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nary, Huygens relied on the geometrical principle, and Leibnitz and Bernoullis
used the calculus and Hooke’s law to develop the general differential equations of
equilibrium of a chain element under various loading. In addition, Bemoullis pro-
vided the basic fundamental of the calculus of variations to keep the center of
gravity of the chain as low as possible. Furthermore, the principle of virtual work
was developed. In the early 18" century, the vibration of taut string was exten-
sively investigated to get the nature of the solution of partial differential equations.
In 1738, Daniel Bernoulli (son of John Bernoulli) published a solution for natural
frequencies of a chain that hangs from one end, and the solution was in the form
of an infinite series (Watson, 1966). In 1764, Euler obtained the equation of mo-
tion for the vibrating taut membrane and obtained the infinite series solution
through the variable separation. The partial solution was given by Poisson in 1829
and Clebsch in 1862. In addition, Lagrange in 1760 used the discretized string of
beads model of the taut string as an illustration of the application of his equations
of motion in Whittacker (1970). This work was done for the first time on the solu-
tion of vibration problems by the difference equations.

The equilibrium configuration, tension and displacement of elastic cables under
arbitrary loading are needed in the design of cable structures. Rohrs (1851) first
modeled the vibration of a uniform, inextensible suspended chain hanging freely
under its own weight and obtained the approximate natural frequencies and re-
sponses of the cable. Routh (1884) considered the symmetric transverse vibration
of a heterogeneous chain hanging in the form of a cycloid, and application of this
chain model to the uniform chain yielded the Rohrs’ model when the sag ratio is
small. The chain was still modeled as inextensible. Pugsley (1949) developed a
semi-empirical theory for the in-plane natural frequencies of the first three modes
of a uniform, inextensible suspended chain. Saxon and Cahn (1953) developed an
asymptotic method for the natural frequencies of the chain for large sag to span ra-
tios. Simpson (1966) investigated the in-plane vibration of a stretched cable
through its equilibrium and also determined the natural frequencies of multispan,
sagged transmission lines using the transfer matrix method. Irvine and Caughey
(1974) used a similar approach to investigate the free vibrations of a sagged,
stretched cable hanging under its own weight. Hagedorn and Schafer (1980)
showed that geometrical nonlinearity is significant in the computation of natural
frequencies of in-plane vibration of an elastic cable. Luongo et al. (1984) analyzed
the planar, non-linear, free vibrations of sagged cables through a perturbation
method. Perkins (1992) considered the nonlinear vibrations of 3-dimensional,
elastic, sagged cables analytically and experimentally, and gave a brief review of
recent developments in cable dynamics. For translating cables, Simpson (1972)
investigated planar oscillations by the linearized equations of motion around the
equilibrium. Triantafyllou (1985) used an alternative approach to derive the lin-
earized equations of motion at the equilibrium. Perkins and Mote (1987, 1989) de-
veloped a 3-dimensional cable theory for traveling elastic cables. The natural
modes for the vibration and stability of translating cable at equilibria were ob-
tained from the eigensolutions of discretized continuum models, and also some
experimental results were reported. Luo et al (1996) presented the analytical solu-
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tion and resonant motion for a stretched, spinning, nonlinear tether.

The non-straight equilibria of the cable have been determined by approximate
means. For the stationary cables or strings, Dickey (1969) investigated the nonlin-
ear string under a vertical force and gave tensile and compressive equilibrium so-
lutions. Antman (1979) extended the Dickey investigation and investigated com-
prehensively the existence, multiplicity and qualitative behaviors of equilibrium
for nonlinear elastic strings under different loads. The translating, sagged string
possesses two non-trivial equilibrium states because of centrifugal loading.
O’Reilly and Varadi (1995) investigated the equilibria of translating elastic cables.
O’Reilly (1996) showed that if one used an observation due to Routh (1884) for
inextensible strings, then the work of Antman (1979) and Dickey (1969) on static
equilibria for strings can be extended to examine the steady motions of these
strings. Healey and Papadopoulos (1990) extended the inextensible cable results to
all the elastic strings. O’Reilly (1996) obtained the steady motion and stability of
elastic and inextensible strings, and it was also shown that multiple steady motions
were possible. In the quantitative investigation of elastic cables, Irvine (1981)
used the method of Dickey (1969) to determine the exact equilibrium configura-
tion and the approximate displacements of 2-dimensional cables under positive
tension. For a single concentrated vertical load, the predicted displacement is con-
strained by the assumption that the equilibrium configuration is parabolic and that
the ends of the cable are fixed. For multiple concentrated masses, the solutions
given by Irvine (1981) require specificity of the initial configuration. To overcome
these limitations, Yu et al. (1995) followed Irvine’s procedure and computed the
tension and equilibrium configuration of a 3-dimensional cable under uniform and
concentrated transverse loading. The aforementioned exact solutions describe the
equilibrium but not the deformation displacement because the initial configuration
is not known. Luo and Mote (2000a) developed a nonlinear theory for traveling,
arbitrarily sagged, elastic cables, and the closed-form equilibrium solution and ex-
istence were developed analytically. To investigate dynamics of nonlinear sagged,
elastic cable, the dynamics of the inextensible cables should be investigated. Luo
and Wang (2002) gave a series solution for the oscillation of the traveling, inex-
tensible cable. Wang and Luo (2004) presented an alternative analytic solution for
the motion of the in-plane, traveling inextensible cable. This analytical solution is
also valid for the traveling speed over the critical speed. Based on dynamics of the
inextensible cables, the dynamics of the sagged cables can be determined.

1.1.2. Beams and rods

Galileo (1638) studied the resistance of a beam clamped at one end into the wall
under its own weight or applied weight, which caused modern science to develop.
Through waves and vibrations in deformable-bodies, one understood the light and
sound propagations. Before the theory of elasticity based on the Hooke’s law and
Navier’s general differential equations for deformable-bodies, one investigated the
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theory of the bending and twisting of thin rods and wires. To obtain the solutions
and extension of the Galileo’s problems, the related, approximate theories for the
vibration of bars and plates and the stability of columns were developed between
1638 and 1821. The 1-dimensional rod theory from 3-dimensional models by av-
eraging the stress on the cross section was introduced by Leibniz in 1684. Since
then, the first investigation of the elastic line or elastica was presented by James
Bernoulli in 1705. In that research, the resistance of the bent rod is assumed to
arisc from the extension and contraction of its longitudinal fibers in the elastica,
and the equation of the curve assumed by the axis is given, in which the resistance
to bending is a bending moment proportional to curvature of the rod as bent. Once
the concept about the bending moment perpendicular to curvature was established,
the work done in bending a rod is proportional to the square of its curvature.
Danial Bernoulli suggested to Euler that the differential equation of the bent rod
can be obtained by minimizing the integral of the square of the curvature along the
rod. From that suggestion, in 1744, Euler obtained the differential equation of the
bent rod and classified the various form for such a problem. From this problem,
Euler worked on what is the least length of elastica to bend under its own weight
or applied weight (distributed force). Following the Euler theory, Lagrange deter-
mined the strongest form of column. Such an idea is a base for the variational
principle, and such research is the earliest research on elastic stability. In the
Euler’s investigation, the rod was assumed as a line of particles to resist bending.
In 1776, Coulomb considered the cross section of rod to present the flexure theory
of beams and investigated the torsion of the thin rods. The theory improved the
rod theory presented by Daniel Bernoulli and Euler. The concept of shear was
proposed for the first time. From variation of energy function, the differential
equations for the transverse vibration of bars were obtained by Euler and Daniel
Bernoulli, and the vibration of rods with different boundary conditions was dis-
cussed. In 1802, Chldni presented an investigation of those modes of vibrations,
and discussed the longitudinal and torsional vibrations of the bar. Based on the
Hooke’s law, in 1821, Navier developed the general differential equation for the
theory of elasticity. Since the theory of rods was independently developed, one
thought how to connect the general theory of elasticity to the theory of thin rods.
Kirchhoff (1859) pointed out that the general equations of elasticity are strictly
applicable to any small portion of a thin rod if all the linear dimensions of the por-
tion are of the same order of magnitude as the diameters of the cross section. The
equation of motions for such a portion of the rod could be simplified from the first
approximation of deformation and kinematics. The earlier beam theories were de-
veloped by Kirchhoff (1859) and Clebsch (1862), as also presented in Love
(1944). The comprehensive history of elasticity can be found in Todhunter and
Pearson (1960) and Truesdell (1960).

Since 1940’s, one has been interested in the systematic development of rod
theories from 3-dimensional continuum mechanics. Hay (1942) obtained the strain
from the power series in a thickness parameter. Novozhilov (1948) developed
nonlinear theory for a rod with a large deformation. The other approximate theo-
ries for 1-dimensional rods or bars were presented by Midlin and Herrmann
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(1952), Volterra (1955, 1956, 1961), Midlin and McNiven (1960) and Medick
(1966). The theories were used to investigate the wave propagation and vibrations,
On the other hand, to develop a theory of rod based on a 1-dimensional continuum
model, E. and F. Cosserat (1909) introduced a concept of four vector fields to de-
scribe deformable vectors (directors) at a point of the directed and oriented curve.
Ericksen and Truesdell (1958) used the Cosserat approach to develop a nonlinear
theory of stress and strain in rods and shells through the oriented bodies. Cohn
(1966) developed a static, isothermal theory of elastic curves. Whitman and De-
Silva (1969) followed the Cohn’s work to obtain the dynamical case and gave an
explicit expression for the director inertia terms, and DeSilva and Whitman (1971)
presented a thermo-dynamical theory for the directed curves with constitutive
equations of materials. Such a theory can reduce to classic elastica and the linear
theory of the Timoshenko beam when the assumptions were introduced to the cor-
responding theories, and an exact solution for such a nonlinear theory rods was
presented (e.g., Whitman and DeSilva, 1970, 1972, 1974). On the other hand,
Green (1959) presented the exact equilibrium equations for resultant force and
moments by integration of the 3-dimensional equations over the cross section.
Green and Laws (1966) extended this concept and developed a general theory of
rods through two directors at each point in rods which requires specification of
three vector fields. Antman and Warner (1966) used the polynomials in transverse .
coordinates to express the location of particle in rods and obtained the equation of
motion with powers of the transverse coordinates for hyperelastic rods. Green,
Laws and Naghdi (1967) used the idea of Green and Laws (1966) to present a lin-
ear theory of straight elastic rods, and Green, Knops and Laws (1968) used the
same treatment for small deformation superimposed on finite deformation of elas-
tic rods. A more detailed discussion of rod theories with directors can be referred
to Antman (1972). Reissner (1972, 1973) developed a 1-dimensional finite-strain,
static beam theory but how to treat the moment was not given. Wempner (1973)
presented mechanics of curved rods, but the strain is the Almansi-Hamel strain.
The strain energy of nonlinear rods was presented in Berdichevsky (1982). Mae-
wal (1983) gave strain-displacement relations in nonlinear rods and shells. Daniel-
son and Hodges (1987) discussed nonlinear beam kinematics through the deposi-
tion of the rotation tensor, and a mixed variational formulation for dynamics of
moving beams was presented in Hodges (1990). Simo and Vu-Quoc (1987, 1991)
used the exact strain to develop a theory for geometrically-nonlinear, planar rods,
and several higher-order approximate theories were also given. Recently, this ap-
proach was used for development of the 3-D composite beam theory and numeri-
cal approaches were developed for prediction of dynamic responses in Vu-Quoc
and Ebcioglu (1995, 1996) and Vu-Quoc and Deng (1995, 1997). The other deri-
vation of equations of motion for geometrically-nonlinear rods can be referred to
Crespo da Silva and Glynn (1978a), Crespo da Silva (1991), Pai and Nayfeh
(1990, 1992, 1994).

The vibration of nonlinear, planar rods based on an accurate beam theory was
investigated through a perturbation approach in Verma (1972). The free, nonlinear
transverse vibration of beams was investigated in Nayfeh (1973) when the beam
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properties varied along with length. Ho et al. (1975, 1976) discussed the nonlinear
vibration of rods through a single mode model and a perturbation approach. The
forced vibration of nonlinear, torsional, inextensional beams was investigated in
Crespo da Silva and Glynn (1978b). The planar, forced oscillations of shear in de-
formable beams were investigated through a specific, single-mode response and
perturbation method in Luongo et al. (1986) and the planar motion of an elastic
rod under a compressive force was analyzed in Atanackovic and Cveticanin
(1996). Holmes and Marsden (1981) used the Melnikov method to investigate the
chaotic oscillation of a forced beam. Maewal (1986) investigated chaotic motion
in a harmonically excited elastic beam through the perturbation approach and
Lyapunov exponent method. The dynamical potential for the nonlinear vibration
of cantilevered beams was discussed in Berdichevsky et al. (1995), and the nu-
merical simulations of chaotic motions in non-dampened nonlinear rods were also
presented. Luo and Han (1999) presented the nonlinear equations of an in-plane
rod to investigate its chaos. In practical applications, one often used the approxi-
mate theories to discuss the deformations and vibration of nonlinear rods and
beams. In recent decades, in order to more accurately describe DNA structures and
micro-electromechanical-systems (MEMS), one tried to revisit the theory of rods.
The nonlinear theory of rods in Kirchhoff (1859) was revisited. Tsuru (1987) dis-
cussed equilibrium shape and vibrations of thin elastic rods. Coleman and Dill
(1992) discussed the flexure waves in elastic rods (also see, Coleman et al., 1993).
Tobias and Olson (1993) used a homogeneous inextensible elastic rod with a uni-
form cross section to describe a segment of DNA (also see, Coleman et al., 1995,
1996; Swigon et al., 1998). Lembo (2001) discussed the free shapes of elastic
rods, and Colemen and Swigon (2004) presented the theory of self-contact in
Kirchhoff rods with applications in supercoiling of knotted and unknotted DNA
plasmids. Recently, the Cosserat theory of elastic rods was used to model MEMS
(e.g., Cao et al., 2005; 2006), and the systematic description of elastic rod based
on the Cosserat theory was presented in Cao and Tucker (2008). From the afore-
mentioned survey, it is very important to develop an accurate theory for beams
and rods. This book will present a theoretic frame for one to develop accurate
theories for beams and rods.

1.1.3. Plates and shells

In the 17" century, based on special hypotheses, the theories of thin rods were de-
veloped. In the same fashion, the theory for plates and shells could be developed.
Euler was the first to consider the plate consisting of annuli bars. In fact, the linear
bending theory of plates was really developed by Kirchhoff (1850a,b) from his as-
sumptions for the theory of thin rods. Love (1888) developed the linear theory of
shells from the 3-dimensional equation of linear elasticity, as also presented in
Love (1944). The nonlinear strains were determined by the first-order approxima-
tion of the extension. Such a theory originated from the small free vibration of a
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thin elastic shell in Love (1888). Such a work drew the criticism from Rayleigh
(1888) because such an extensional deformation theory of shells is against the in-
extensional deformation theory. Lamb (1890) used the alternative way to derive
the same equations as in Love (1888) and Basset (1890) considered the higher-
order terms of the extension for thin cylindrical and spherical shells. To solve this
argument, around 1940, with the framework of the Kirchhoff-Love assumption,
Chien (1944 a,b) presented an intrinsic theory of plates and shells. Gol’denveizer
(1944) discussed the applicability of the general theorems of the theory of elastic-
ity to the thin shells. Reissner (1944) introduced the deformation caused by shear
strain into the bending of elastic plates through an assumed displacement field.
Discussion on the developments of the linear theory can be referred to Naghdi
(1972), and other books.

The 3-dimensional thin continuous medium can be described by a 2-
dimensional surface with a director. Such a concept of the continuous and oriented
media was initialed by Duhem (1906). E. and F. Cosserat (1909) extended such
concepts to develop the theory for shells and rods. Such a concept provides a base
for development of the field theory for plates and shells. In addition, the existing
approximate nonlinear theories for plates and shells have been derived from the 3-
dimensional equations. In the early stage, it was assumed that the strain is very
small but the rotation is large or moderately large, and the linear constitutive equa-
tions are assumed to be valid. von Karman (1910) extended the Love’s strain
based on the first order approximation of extension and developed an approximate
theory for plates, and von Karman and Tsien (1939, 1941) used such approximate
theory to investigate the buckling of thin spherical and cylindrical shells by exter-
nal pressure. However, Galerkin (1915) discussed series solutions of some prob-
lems of elastic equilibrium of rods and plates. Novozhilov (1941) presented a gen-
eral theory for stability of thin shells, and followed Galerkin’s idea systematically
presented the nonlinear theory for elasticity in Nolvozhilov (1948) or Nolvozhilov
(1953) (English version). Following the von Karman theory, Reissner (1957) pre-
sented his nonlinear plate theory including shear deformation. Herrmann (1955)
derived a plate theory governing dynamic motion with small elongation and shear
deformation but moderately large rotation. Wang (1990) developed the 2-
dimensional theory reduced from the 3-dimensional theory for transversely iso-
tropic plates. Hodges et al. (1993) developed the geometrically nonlinear plate
theory through the warping displacement. Since von Karman (1910) developed a
nonlinear theory for thin plates with large deflection, ones used that nonlinear the-
ory to investigate the buckling stability (e.g., Levy, 1942) and the nonlinear vibra-
tion of a spinning disk (e.g., Nowinski, 1964, 1981).

Based on the concept of continuous and oriented media, Ericksen and Truesdell
(1958) presented a general development of the kinematics of the oriented media
through n-stretchable directors in the n-dimensional space. The concept of direc-
tors was introduced. Truesdell and Toupin (1960) gave an exposition of the kine-
matics of the theory of oriented bodies. The 3-dimensional theory of an oriented
medium with a single deformable director at all points of the body was developed
in Green, Naghdi and Rivlin (1965). Cohen and DeSilva (1966) used the kinemat-



