內 燃 發 動 機

INTERNAL COMBUSTION ENGINES

1924

郭力三編述

內 燃 發 動 機

詳述煤氣煤油汽油黑油等類汽車航空 船用工場用發電用各種內火發動機最 新之學理構造檢查試驗與實用後部附 設汽車航空機及潛水艦之構造與應用

中華民國十三年初版

內 燃 發 動 機 編述者 郭力三

> 郵費在內已通腦兒處郵票不收 未通匯兒處郵票九折三分為限 匯票請寫北京騾馬市郵局

發售處北京丞相胡同衡州館 郭力三

分售處 各省大書坊

本書有著作權毋許翻印北京永明印書局印刷

序言

人非鳥而能騰空, 日有航空機也. 人非魚而能行水, 日 有潛水艇也.人非神仙而能於千萬里間通信,日有無線 電也. 凡茲類者, 無發動機則不能達其用. 夫發動機之 效用,不待贅述,固己昭昭矣. 蓋原動力爲經營各種實 業之要素,而原動機又以內燃發動機(引擎)為最進步, 且內燃機,用途最廣.發達最速.研究亦最要緊.人人皆 知汽車,快艇,飛機,爲交通上最敏捷之利器.然汽車,快 艇,飛機,等皆以發動機爲最重要部分.其他勿論矣.本 書以淺近文言,詳述煤氣,煤油,汽油,黑油,等類;汽車 , 航空, 發電, 工場, 船舶, 用各種內火發動機最新之學 理, 構造, 检查, 試驗, 與實用. 後部附說汽車, 航空機, 潛水艦,之構造與應用.全書約三百頁.分十四章.附圖 約二百個,附表無數,凡工,學,實業,各界,技術人等, 研究發動機,或使用發動機者,皆可手備一册,以資參 考. 綴嘗以爲物質文明與精神文明並重. 學術不興, 則 文明斷難發達.發動機學,在歐美各國皆已有數十年之 歷史.獨我國尚無此項書籍.不每無學, 豈敢以學術鳴 世,念文化不振,慨然憂之,因述所習,公諸國人, 倘荷 高明君子愛而教之,則獲為愈夥矣.

民國十三年 編述者自誌.

凡例

- 1.編述本書時,曾參考 D. A. Low, W. L. Lind, A. W. Jucge, H. E. Wimperis E. M. Rose, R. Devillers, L. S. Marks, V. A. Page, 淺川教授,內丸最一郎,等諸先生名著.此外雜誌型錄甚多.誌此以表敬意.
- 2.生平研究內燃發動機,蒙工學博士淺川權八恩師之指導甚多,又在東 京池貝製造公司發動機部實習時,蒙該工場主池貝杉二先輩特別優 遇,誌此以表謝意.
- 3.本書之出版成競農君高雨軒君兩人之助力甚多誌此以表謝意.
- 4.研究實用科學,理論與實驗並重.以發動機言,理論以熱力學與燃燒 論為根本.言其實際,則任一發動機,可分為傳動系統(Power Trans -mission System)燃料系統(Fuel System).着火系統(Ignition Sy--stem),潤油系統(Lubricating oil System),冷却系統(Cooling Sys--tem),調速系統(Governing System)及各附屬品等各部實地考察. 雖構造變化萬端,原理則一.能將本書熟習,則各種發動機皆易明瞭.
- 5.本書深淺智識皆有,未學高等數學與物理化學者,則第二章第三章及 第十一章可省略不讀,若己受過高等教育者,則可從頭順序看下必覺 有趣.
- 6.學術名詞應俟全國機械學會成立後公同决定.本書係採用北地工界 慣用之俗語,然皆已附記英語以便參照.
- 7.書之良窳,應察內容,本書並未請人題字,或作序.但亦歡迎識者批評.
- 8.本書以鼓吹實用科學智識為目的,歡迎各界介紹館行。
- 9.本書發售預約時,己蒙海內多數高明贊許,當時因事未及一一詳細答 覆,又以頁數甚多及新舊年假之故,未能如期出書,幸為原亮。

试读结束,需要全本PDF请购买 www.ertongbook.com

內燃發動機目錄

內燃機發明家歷史表,故障檢查表,重要常數與數學公式.

第一章 總論(1-26)

第一節 內燃機之定義及其分類。

第二節 內燃機發達之簡史.

第三節 內燃機之使用範圍.

第四節 內燃機與蒸氣機及氣渦機(氣輪)之比較研究.

- 1,蒸氣機與氣渦機之比較.2,內燃機與蒸氣機之比較.
- 3,內燃機與氣渦機之比較.4,結論.

第二章 理論即熱力學.(27-58)

1, 熱.2, 熱力發動機.3, 熱量及其單位.4, 比熱.5, 氣體之比熱 6,工量之單位.7,動力之單位.8,效率.9,熱之機械當量.10,容 積熱.11,氣體之變態.12,博以爾法則.13,查爾氏法則.14,絕對温度.15,完全瓦斯.16,內部能力.17,比熱之比.18,等温線.19, 斷熱線.20,瓦斯膨脹時所作工量;(a)等温膨脹時之作工,(b)斷熱膨脹時之作工.21,熱力學之法則.22, Entropy.23, 熱囘輸.24,等温囘輸.(加那囘輸),25,等容囘輸(阿陀囘輸).26,空氣標準效率.27。等壓囘輸(的吉兒囘輸).28,內燃機從熱力學上之分類,各種瓦斯之熱性表.

第三章 燃燒與燃料及效率(59-78)

1,化學要義.2,燃燒之定義.3,水素(輕氣)之燃燒.4,炭素之燃

燒.5,硫黃之燃燒.6,炭化水素之燃燒.7,空氣之成分.8,普通固體燃料之成分.9,各種燃料完全燃燒時所要之空氣與燃燒後產生物.10,燃料之發熱量.11,高低發熱量.12,內燃機所用之燃料13,壓搾力之限制與早火.14,燃燒速度 15,效率;(a)壓搾力與效率之關係,速度與熱效率之關係,(b)容積效率.(c)機械效率.第四章 各種有名發動機之構造.(79-132)

1,內燃機之特點.2,囘輸動作.3,阿陀四行程囘輸.4,的吉兒四 行程囘輸.5,二行程囘輸.6,煤油機之種類;(a)的吉兒機,(b)半

的吉兒機.(c)爆發發動機,(d)第二類爆發機,(e)第三類爆發機

7.克樂斯雷瓦斯發動機.8,貴兒廷二行程回輸瓦斯發動機.9,

阿泄屋塞瓦斯發動機.10,大瓦斯發動機活塞桿用之填充箱.11,

衡扶雷瓦斯唧筒,12,的吉兒發動機、13,甘百高壓煤油機、14,甘

百二行程煤油機.15,航空發動機.16,內燃機與蒸氣機之聯合發

動機.17,四行程機與二行程機優劣之比較.18,發電用及船用發

動機.

第五章 發動機主要部分及其附屬裝置與製造用 材料(133-148)

1,氣罐.2,活塞.3,活塞環.4,活塞錦.5,連接桿.6,曲軸.7,偏輪軸.8,氣門及其開閉.9,飛輪.10,冷却裝置.11,始動裝置.12,靜音器.

第六章 氣化器,着火法,調速法,及燃油供給法。

氣化器之性能及其構造,哲宜此汽化器,C.H.氣化器.

電氣着火法,及發火次序.

I,續斷調速法.2,變性調速法.3,變量調速法.4,聯合法.5,着火 時刻變更法.6,着火裝置與氣喉門同時變更法.

燃油供給法之種類,及航容機燃油供給法,

第七章 潤滑油(機器油)及潤滑法(173-186)

減摩.I,粘性.2,酸化作用.3,發光點.4,寒凝試驗.5,氣散作用 6,發動機之炭化作用.附美國內燃機用主要機器油性資表.

送油法;1,飛散法.2,半飛散法.3,强壓給油法.4,航空發動機送油法.5,船用發動機送油法.6,重力法及混合送油法.

第八章 壓力指示器,壓力線圖及馬力測定法.

1,壓力指示器.2,近今指示器之鉛筆機構.3,指示器之汽門.4,克樂斯比指示器.5,D.M.指示器.6,光線指壓器.7,減動裝置.8,各種發動機指壓線圖及其變形.9,指示平均有效壓力.10,馬力測定法.

第九章 試驗法及其結果.(207-236)

I,煤氣機之試驗.2,煤氣機動力之損失與機械效率.3,煤氣機之 熱效率.4,煤氣機熱量損失.5,煤氣機平均熱量平衡表.6,煤氣 供給量與馬力-維廉線.7,氣油機之試驗.8,汽車發動機之試 驗.9,氣油機高速試驗.10,的吉兒機之試驗.11,克樂斯雷石油 機之試驗.12,低壓及中壓煤油機之試驗.13,史迪爾聯合發動機 Ħ

及蘇兒走的吉兒機之比較試驗.14,廢氣分析線圖之效用.15,杜格分數.

第十章 故障之起因及其影響與理治. (237-242) 1,發動機不始動.2,發動機難停止,3,發動機自己停止.4,發動 機不着火.5,動力之損失.6,炭化作用.7,發動機之過熱.8,冰凍 .9,發動機之起打擊聲响.

第十一章 發動機機械力學.(243-252)

I,速度加速度與惰力.2,活塞之速度.3,活塞之加速度.4,曲釘之加速度.5,速度,加速度,惰力及爆發壓力等之關係.6,發動機之囘轉扭力率.

第十二章 汽車及航空發動機.(253-274)

I,蒸氣自動車.2,電氣自動車.3,汽油自動車,汽車主要部分名稱.接斷器.變速齒車.差動齒車. 航空發動機所要求之要件. 航空發動機之種類. 航空發動機現今之趨勢,及其最近之發達. 航空發動機各部分之材料.

第十三章 煤氣發生器(275-280)

1, 吸入煤氣發生器.2,壓入煤氣發生器.

第十四章 航空機及潛水艦.(281-296)

航空機之種類,應用與構造.飛行機各部分之名稱.飛行機上備用之儀器,及長途飛航用儀器.

潛水艦所要性能.潛水艦之歷史,種類,構造. 潛水艦之水槽.換氣,防毒.及安全裝置.潛望鏡. 通信裝置.動力設備.武器,排水量,速力,續航力,預防作戰,等. (完)

內燃機發明家歷史表

年代	發明家	國籍	發動機及燃料	記錄
1680	侯 進 氏	荷蘭人	火藥發動機	他最初想出爆發真空 法, ¹
	好地斐理			他以同法進行但似未 實驗,
1688	柏 李			他謂對於此方實驗無 結果,乃注意於汽力 方面.
1794	史出力突	英 人	綿油發動機	他的理想正合法,以 火燃着火.火燃通過 一口與氣罐相通.因 活塞之行動時開時閉
1799	勒榜	法 人	雙 働 瓦斯發 動機 瓦斯合空氣	他的發動機與後知之 等壓機相似, 瓦斯與 空氣各由一喞筒供給 之,但他未成功.於18 09年已被刺
1820	攝西爾先生	英 人	瓦 斯 發 動 機 水素合空氣	他的發動機以爆發真 空法運轉,每分60 囘 轉時動作合法,此為 知名於世之第一發動 機.
1838	巴吶得	英 人	瓦斯發動機 瓦斯合空氣	他會計劃三發動機。 第一為單働機,第二 第三為雙動機。皆備 有壓縮系統。2他的火 燃養火法頗稱有效。
1860	雷那	法人	瓦斯發動機 無壓縮 二行程	他的發動機,機構與 雙動蒸汽機相似,以 第一類電池及捲線所 生之跳躍電火着火, 但以無壓縮故瓦斯與 滑油消費量不經濟.

1862	羅	甲	氏	法	人	兎斯發動機 壓 縮 式 四 行 程	他會取得四行程壓縮 式瓦斯發動機之特許 權,3僅以理論發表, 但未實際成功.
1862	布	列	董	美	人	等 壓	他的瓦斯發動機未成功,火油發動機機械 稍良,但不經濟.
1866	ान हैं इन	它及阆	有貢	皆征	总人	瓦斯發動機	他用自由活塞,《於連接桿上設棘齒輪,故發動機之動作有痙攣性(快慢不常)。
1876	ब्य		陀	徳	人	静 音	他始造出此種可賞讚 的單働機,遂成內燃 機之標準型.
1879	克	樓	客	英	人	壓 縮 式 二 行 程 瓦 斯 發 動機	他用二唧筒,以一壓縮瓦斯,一壓縮空氣 . 乃造出標準型二行程式發動機,
1895	的	吉	兒	德	Д	等 壓 火油發動機 重 汕	他的發動機初僅壓縮 空氣至可以燃燒燃油 之高温。。然油為壓力 東高之壓縮空氣所圍 射變為霧狀入於氣罐 之內.此機之熱效率 為各種發動機之冠.
1895	德	砂	樓	fils	人	高 速 汽油發動機	他的發動機重量甚輕,速度甚高,合於汽車(自働車)用.主要進步為機械方面,後製之航空發動機,即由汽車用發動機進步者也.
1909	衡	扶	電	英	人	瓦 斯 喞 筒	他的唧筒以水柱代活塞,水柱擺動(升降) 於瓦斯爆發力之下, 可由低處升於高處, 以為水渦機等之用.

1920 史 迪 爾 英 人 聯合發動機 機及內燃機而成,熟效率最高。

- 注意 1,爆發填空法,以火藥爆發於空氣罐內,廢氣由抑止門(許 出不許入之門)逐出,如此冷後留一部分填空,大氣之力 乃將活塞壓下,循環不已.
 - 2,壓縮喞筒,供給喞筒,容器,與其相通口路,是謂壓縮系統.
 - 3,羅甲氏的特許

下說四條為羅甲氏特許中之主體;

- a,氣罐容積宜最大,則冷却表面可最小.
- b,活塞速度宜最大。
- c,在作工行程之始點,壓力宜最大.
- d,膨脹宜最大.

他欲使熱效率高,以求上列結果,故主張用一汽罐,分四 行程以實行他的旋囘.四行程如下;

- a,在第一或吸入行程,將瓦斯及空氣吸入.
- b,在第二行程壓縮.
- c,在死點着火,於第三行程以行膨脹.
- d,在第四,最後或囘頭行程,將罐內廢氣逐出。
- 4,鬆活塞或自由活塞,未固定於連結桿可向上飛。
- 5,內燃機
- 6,以高壓所生之高温着火(每平方英寸比500磅尤高)。

Inventor's Historical Table of Internal Combustion Engine

Year	Inventor	Country	Engine & Fuel	Remarks
1680	Huygens	Dutch	Gunpowder Engine	He first catch the idea of explossion-vacuum method.
	Abbe Hautfeuille			He advanced with similar idea but seem to had made no experiment.
1688	Papin			He stated that the experiments alon -g this line were unsuccessful, so de -voted his attentio -n to steam power.
1794	Robert Street	English	Turpentine Engine	His idea was corre -ct. Ignition by fl -ame through port uncovered by piston.
1799	Lebon	French	Double acting Gas Engine gas mixed with air	His engine like con-stant pressure en-gine as latter known. gas and air were supplied from separat pump but he did not succeed and he was as-sassinated in 1809.
1820	Reverend W Cecil	English	Gas Engine Hydrogen mixed with air	His engine operate according to the explossion-vacuum method, working regularly at 60 R. P. M.and it is the first gas engine become known to the world.

1838	William Barnett	English	Gas Engine gas mixed with air	He described three engine, the first one is single acting, the else two are double acting, all these are with compression system ² His flame method of ignition was very efficient.
1860	Lenoir	French	Gas Engine Non-Compres -sion Two Stroke	The mechanism of his engine was like a double acting steam engine. Ignition by jump spark produced from primary battery and coil, but for the sake of non-compression, the consumption of gas and oil was uneconomical.
1862	M. Beau de Rochas	French	Four Stroke	He took out a pat -ent ³ of his four stroke compression gas engine setting forth theoretically bud did not made a working success of his invention.
1862	George B. Brayton	Americ	Constant pres -sure Gas & Oil Engine	His gas engine fail, oil engine is mechanically better but uneconomical.
1866	Otto & Langen	German	Gas Engine	He use loss piston ⁴ and ratchet on connecting rod hen -ce the action of his engine being spasmodic.

-				
1876	Otto	German	Silent Gas Engine Four Stroke and Compression	He brought out the Celebrated single acting engine. It become the stand- ard type of I. C. E ⁵
1879	Dugald Clerk	English	Compression Two Stroke Gas Engine	He use separate cylinders for pum -ping of gas and air so blought out the standard type of two stroke en -gine.
1895	Rudolph Diesel	German	Constant Pressure Oil Engine Heavy Oil	His engine at first air only compres -sed to a sufficient high temperature to ignite the fuel which is injected to cylinder in a spray by compressed a -ir of more higher pressure. The the -r mal efficency of his engine is much higher than any other kind of eng -ine.
1895	Dai ['] mler	German	High Speed Petrol Engine	His engine conside -rably lgiht and w -ith more higher speed good for automobile. Its Chief improvement were of mechanical nature. The aeroeng -ine latter constructed is those improved from automobile engine.

1909	H. A. Humphery	English	Gas Pump	In his pump the iron piston was re-placed by water column which is oscillating under exprosive force and being raised to higher level.
1920	W. J. Still	English	Combined Engine	His engine combin -ed of steam engine and I. C. E. with highest thermal efficency.

- Note I. The explession-vacuum method is that the gunpowder was exploded in a cylinder filled with air and the burned gas being expelled through check valve, those leaving, after cooling a Partial vacuum, The atmospheric pressure then drove the piston down, and so on.
 - 2. The compression pump, charging pump receiver and its communicating port is called compression system.
 - 3. M. Beau de Rochas' patent
 The following four propositions were embodied in his patents:
 - a, The largest cylinder capacity with the smallest posible cooling surface.

- b, Maximum possible piston speed.
- c, The greatest possible pressure at the beginning of the working stroke.
- d, The greatest possible expansion.

To abtain the results which he laid down as being necessary for high efficiency, he proposed to use a single cylinder and to carry out the cycle in four strokes as follows.

- a, Drawing in the charge of gas and air on the first, or suction, stroke.
- b, Compression during the following stroke.
- c, Ignition at the dead point and expansion during third stroke.
- d, Forcing out the burned gases from the cylinder on the fourth and last, or return, stroke.
- 4. Loos piston or free piston it was not fastened to a connecting rod and could fly upward.
- 5. Internal Combustion Engine
- 6. Ignition by high temperature produced by high compression (higher than 500 pounds per squar inch.)