Wolfgang P. Schleich

Quantum Optics
in Phase Space

FH 25 ] v i i TR

() wus 2 P08 & s 3)

www.wpcbj.com.cn



Wolfgang P. Schleich
Quantum Optics
in Phase Space

&WILEY-VCH

Berlin - Weinheim - New York - Chichester - Brisbane - Singapore - Toronto



EEERSRE (CIP) Wi

MZEPRBR T WX/ (#8) MEAE.
—REA . —dbst. R E LR FILRAH,
2010.2

HBAERC, Quantum Optics in Phase Space
ISBN 978-7-5100-0543-5

I.OM- . O WM. Of-FH¥—3
V. 0431. 2

o A P 4R CIP %7 (2010) 45010622

Quantum Optics in Phase Space
Wolfgang P. Schleich

o &

=S [l P B O
A X

HHE BB RA B R AR

= E S A RAHE

HARBHBEARIAHAT QUEEANRE 1375 100010)
010-64021602, 010-64015659

kjb@ wpcbj. com. ¢cn

S B
25 |§w

o
o

16

44.75

2010 4£01

B 01-2000-6231

TR BB NN B B R

]
I
i

H | FETH | EREDE

:I_ID

978-7-5100-0543-5/0 - 759 E #:  109.00 T




Author:
Prof. Dr. Wolfgang P. Schieich, Abteilung fiir Quantenphysik, Universitat Ulm, Germany
e-mail: Wolfgang.Schleich@physik.uni-ulm.de

1st edition

Library of Congress Card No: applied for

British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British
Library.

Die Deutsche Bibliothek — CIP Cataloguing-in-Publication-Data
A catalogue record for this publication is available from Die Deutsche Bibliothek

This book was carefully produced. Nevertheless, authors, editors, and publishers do not warrant the informa-
tion contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illust-
rations, procedural details or other items may inadvertently be inaccurate.

© WILEY-VCH Verlag Berlin GmbH, Berlin (Federal Republic of Germany), 2001
ISBN 3-527-29435-X

Originally published in the English language by WILEY-VCH Verlag GmbH & Co. KGaA, Boschstrafie
12, D-69469 Weinheim, Federal Republic of Germany, under the title “Quantum Optics in Phase Space™.
Copyright 2001 by WILEY-VCH Verlag GmbH GmbH & Co. KGaA.



“FAITH MAINTAINED IS ONE OF THE GREAT GIFTS BESTOWED BY FELLOW MAN”

Dedicated to the two people who always had faith that this book would be completed

Kathy and Michael



Preface

During the winter semester of 1992/93 I taught for the first time the course Quan-
tum Optics I at the University of Ulm, which was followed by part II in the summer
semester of 1993. When I offered the course a second time the University was kind
enough to financially support two diplom students, Erwin Mayr and Daniel Krdhmer,
who had already taken this class in the previous year to transform my hand-written
notes and sketches of drawings into a legible form. Erwin and Daniel have done a
tremendous job. Since then I have taught this course many times and collected more
and more material which was included into this manuscript by other graduate stu-
dents of the Abteilung. It has served many generations of students at the University
of Ulm as a first introduction to the field of quantum optics.

During one of his many visits to Ulm, Michael Poulson, a close friend from the
VCH-Wiley publishing house saw the manuscript on my desk. “I want to pub-
lish these notes” was his immediate reaction. Michael had complete faith that this
manuscript would eventually be turned into a publishable book. He wanted the
material to be expanded to include problems, experiments and an exhaustive list of
references. The goal was to convert the existing manuscript of about 150 pages into
a book of about 250 pages. His trust in me was so great that he started advertising
Quantum Optics in Phase Space before we had even signed a contract. I believe the
present result satisfies the criteria Michael had put forward with one exception — the
number of pages.

At Christmas of 1996 we finally signed a contract and Michael was extremely
relieved. I still remember his words “now I have finally succeeded in signing you up
for the book”. A week later his untimely death during Christmas vacation added a
new meaning to this sentence and a purposeful dimension to his faith and expectation;
I was determined more than ever to deliver what I had promised.

Eventually Erwin and Daniel graduated and their new professional life did not
allow them to devote more time to continue the project. Since that fateful Christmas
of 1996, many students have helped me transform my class notes into various sections
of the book continuing the work that Erwin and Daniel had begun. Stephan Menegh-
ini took over and for several years he was instrumental in typing the manuscript. But
also he graduated during the course of the project. In the final phase of the book
his role was taken over by Florian Haug. I am enormously grateful to all of them for
their assistance. What started out with 200 pages at- Erwin and Daniel’s departure
eventually expanded and reached its present 700 page size.

Similarly, the field of quantum optics has expanded enormously over the last 10
years. This fact reflects itself in the variety of textbooks that have been published
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on this topic. It is impossible to represent all branches of this rapidly moving field
in one single book. As a consequence many current topics are left out in the present
one, such as quantumn information or Bose-Einstein condensation. The main theme
of the book is quantum phase space and the application of semi-classical concepts,
such as WKB techniques to problems of quantum optics. In the present American
hype of the “e-mail and the information highway” some people have suggested to
call the book “phase-space.com.”

Many friends and colleagues have read through various parts of the book and
have made useful comments. In this regard I want to mention especially I. Bialynicki-
Birula, J.H. Eberly, H.J. Kimble, D. Kobe, R.F. O’Connell, H. Walther, K. Waéd-
kiewicz and E. Wolf. Special thanks go to M. Konig who has worked very carefully
through the whole book and has made numerous constructive remarks. In the final
stage all members of the Abteilung have proofread the entire book. Many thanks to
G. Alber, M. Bienert, M. Cirone, O. Crasser, A. Delgado, D. Fischer, M. Freyberger,
F. Haug, V. Kozlov, H. Mack, W. Merkel, G. Metikas, M. Mussinger, K. Vogel, J.
Wichmann and V.P. Yakovlev. K. Vogel was also instrumental in putting the index
together. I am grateful to my secretaries B. Casel, R. Knopfle and U. Thomas who
were helpful in collecting the literature.

Various chapters of the book have been tested in two lecture series given at the
University of Texas at Austin. The penetrating questions of J.H. Eberly, M. Fink,
D. Heinzen, J. Keto, M. Raizen, W.C. Schieve and E.C.G. Sudarshan have helped to
sharpen my arguments through the extremely lively discussions during and after the
classes. They have enormously helped to improve the presentation of the material.
The kind hospitality of and the always friendly atmosphere at the physics department
at UT Austin are greatly appreciated.

Many science organisations have supported the research summarized in the pre-
sent book. In this context I want to mention especially the Deutsche Forschungsge-
meinschaft and the Leibniz Program, the European Community, the Heraeus Foun-
dation, the Humboldt Foundation and the University of Ulm. All have graciously
financed my students, assistants and visitors. Many thanks to all of them.

The quiet periods in Denton, Texas with my understanding father-in-law, H.C.
Phillips who always refers to me as his “blue electron son-in-law” were very conducive
to completing this book. Moreover, I greatfully acknowledge the kind hospitality at
the physics department at North Texas State University, Denton.

Last, but not least, I want to express my sincere thanks to my teachers. G.
SiiBmann, whose lectures at the Ludwig-Maximilians-Universitit in Miinchen woke
my interest in theoretical physics and made me change my degree from high school
teacher to physicist. Siifmann’s broad and deep interest in the whole field of physics
and not just a special area has always impressed me and hopefully this book reflects
bisinfluence. M. O. Scully and H. Walther have introduced me to the field of quantum
optics 20 years ago. I was fortunate enough to closely work with them on various
problems of quantum optics and they have strongly influenced my view of the field.
Through my collaborations with them I have gained many insights. A different angle
of physics came through my years in Texas working with J.A. Wheeler. He taught
me that many phenomena in physics become transparent when viewed using WKB
techniques combined with the concept of phase space. In this sense the origin of this
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book stems from my years in Austin, Texas working with John on interference in
phase space.

Special thanks go to my publishers Wiley-VCH and, in particular, to the innocent
successor of Michael Poulson, Michael Bir, for his patience in awaiting the final
outcome of Quantum Optics in Phase Space. Indeed they have suffered along with
me in my trials of writing a comprehensive textbook on the application of phase
space to quantum optics.

Above all T want to thank my parents, who encouraged me to think deeply and
who made it possible for me to get the education necessary to pursue my studies. A
special thanks goes to my wife Kathy and Michael Poulson, who never gave up their
faith in me that this book would ever be finished even when other people close to
me have made bets that the book would never (or not) be completed before the year
2050. Michael Poulson once said “I am not worried about the book being finished
because Kathy will make sure you get it done for both of us”. With these fateful
words he was right; may he rest in peace.

Wolfgang P. Schleich
Ulm, November 2000



Contents

1 What’s Quantum Optics?

1.1
1.2

1.3

14

1.5

1.6

2.2

2.3

On the Road to Quantum Optics . . . . . ... ... ........

Resonance Fluorescence . . . . . . ... ... . ... ........
1.2.1 Elastic Peak: Light asa Wave . . . . . . . .. ... ... ..
1.2.2 Mollow-Three-Peak Spectrum . . . . .. .. ... ......
1.2.3 Anti-Bunching . . . . . ... Lo Lo oo
1.3.1 What is a Squeezed State? . . . . . . . .. ... ... ....
1.3.2 Squeezed States in the Optical Parametric Oscillator . . . .
1.3.3 Oscillatory Photon Statistics . . . . . ... .. ... ....
1.3.4 Interference in Phase Space . . . . . ... ... ... ....

Jaynes-Cummings-Paul Model . . . . . . .. ... .. ... .....
1.4.1 Single Two-Level Atom plus a Single Mode . . . . ... ..
14.2 Time Scales . . . . . . . . ... ... L

Cavity QED . . . . . . ..
1.5.1 An Amazing Maser . . . . .. ... oL o oL oo,
1.5.2 Cavity QED in the Optical Domain . . . . . . ... ... ..

deBroglieOptics . . . .. . .. .. ... ... 0.
1.6.1 Electron and Neutron Optics . . . . . . . ... .. .....
1.6.2 Atom Optics . . . . . . . ... .. ...
1.6.3 Atom Optics in Quantized Light Fields . . . . . . ... ...

1.7 Quantum Motion in Paul Traps . . . . .. ... ... .. ... ...
1.7.1 Analogy to Cavity QED . . . . . . ... .. oL,
1.7.2 Quantum Information Processing . . . . . . ... ... ...
1.8 Two-Photon Interferometry and More . . . ... .. .. ... ...
1.9 Outlineof the Book . . . . . ... ... ... .. ..........

2 Ante
2.1 Position and Momentum Eigenstates . . . . . . .. ... ... ...

2.1.1 Properties of Eigenstates . . . . . . . ... ... ... ....
2.1.2 Derivative of Wave Function . . . . . . . . . .. ... ...
2.1.3 Fourier Transform Connects - and p-Space . . . ... ...

Energy Eigenstate . . . ... ... ... ... ... ... . ...
2.2.1 Arbitrary Representation . . . . . ... ... .. ... ...
2.2.2 Position Representation . . . . . . .. . ... ... ... ..

Density Operator: A Brief Introduction. . . . . .. ... ... ...

N U RO R e



XII

3

Contents

2.3.1 A State Vector isnot Enough! . . . . . ... ... ... ...
2.3.2 Definition and Properties
2.3.3 Traceof Operator. . . . . . . . ... ... .. ... .....
2.3.4 Examples of a Density Operator
2.4 Time Evolution of Quantum States
2.4.1 Motion of a Wave Packet . . . . . ... ... ........
2.4.2 Time Evolution due to Interaction
2.4.3 Time Dependent Hamiltonian . . . . . . ... ... ... ..
2.4.4 Time Evolution of Density Operator

Wigner Function
3.1 Jump Start of the Wigner Function
3.2 Properties of the Wigner Function
3.2.1 Marginals . . . . . . . . ... Lo
3.2.2 Overlap of Quantum States as Overlap in Phase Space . . .
3.2.3 Shape of Wigner Function . . . . ... .. ... ... ....
3.3 Time Evolution of Wigner Function . . . . . . . ... ... .. ...
3.3.1 von Neumann Equation in Phase Space. . . . . . .. .. ..
3.3.2 Quantum Liouville Equation. . . . . . . .. ... ... ...
3.4 Wigner Function Determined by Phase Space . . . . ... ... ..
3.4.1 Definition of Moyal Function . . ... ... ... ... ...
3.4.2 Phase Space Equations for Moyal Functions . . . . . . . ..
3.5 Phase Space Equations for Energy Eigenstates . . . . . . . ... ..
3.5.1 Power Expansion in Planck’s Constant . . . . .. ... ...
3.5.2 Model Differential Equation . . . .. . .. ... ... ...
3.6 Harmonic Oscillator . . . . . . .. ... o L
3.6.1 Wigner Function as Wave Function . . . . . . .. ... ...
3.6.2 Phase Space Enforces Energy Quantization . . . .. .. ..
3.7 Evaluation of Quantum Mechanical Averages . ... ... ... ..
3.71 Operator Ordering . . . . . . . .. ... ... .. ... ..
3.7.2 Examples of Weyl-Wigner Ordering . . . . . . ... ... ..

Quantum States in Phase Space

4.1 Energy Eigenstate . . . . ... ... .. ... ... .........
4.1.1 Simple Phase Space Representation . . . . . . . ... .. ..
4.1.2 Large-m Limit . . . . ... ... ... ... .. ... ...
4.1.3 Wigner Function . . . ... ... ... ... . 0 L.

42 Coherent State . . . . . . . . . . .. ...
4.2.1 Definition of a Coherent State . . . . . . ... ... ... ..
4.2.2 Energy Distribution . . . .. ... ... ... .. .. .. ..
4.2.3 Time Evolution . . . . . . . . . . . ... ... .. . ....

4.3 Squeezed State . . . . .. .. ... L e
4.3.1 Definition of a Squeezed State . . . . . ... ... ... ...
4.3.2 Energy Distribution: Exact Treatment . . . ... ... ...
4.3.3 Energy Distribution: Asymptotic Treatment . . . . . . . . .
4.34 Limit Towards Squeezed Vacuum . . . . . . ... ... ...



6

Contents

4.3.5 Time Evolution . . . . . . . .. . ... ... ... ......
44 Rotated Quadrature States . . . ... .. ... ... ........

44.1 Wigner Function of Position and Momentum States . . . . .

4.4.2 Position Wave Function of Rotated Quadrature States

443 Wigner Function of Rotated Quadrature States
4.5 Quantum State Reconstruction . . ... ... ... ...... ...

4.5.1 Tomographic Cuts through Wigner Function . . . . . . . ..

4.5.2 Radon Transformation . . . . . . ... .. .. ... .....

Waves a 1a WKB

5.1 Probability for Classical Motion . . . . . . .. ... ... ......

5.2 Probability Amplitudes for Quantum Motion
5.2.1 An Educated Guess . . . . . .. ... Lo oL
5.2.2 Range of Validity of WKB Wave Function . . . ... .. ..

5.3 Energy Quantization . . . . . ... .. .. ... ... . L.
5.3.1 Determining the Phase . . . . . . ... ... ... ... ...
5.3.2 Bohr-Sommerfeld-Kramers Quantization . . . . . . ... ..

5.4 SUIMIMATY . -« .« v v v v e e et e e e e e e e
5.4.1 Construction of Primitive WKB Wave Function . . . . . . .
5.4.2 Uniform Asymptotic Expansion . . . .. ... ... .....

WKB and Berry Phase

6.1 Berry Phase and Adiabatic Approximation . . . . . . ... .. ...
6.1.1 Adiabatic Theorem . . . . . . . . . .. .. ... ... ...
6.1.2 Analysis of Geometrical Phase . . . . . .. ... ... ....
6.1.3 Geometrical Phase as a Flux in Hilbert Space . . . . . . ..

6.2 WKB Wave Functions from Adiabaticity . . . . .. ... ... ...
6.2.1 Energy Eigenvalue Problem as Propagation Problem . . . .
6.2.2 Dynamical and Geometrical Phase . . . .. ... ... ...
6.2.3 WKB Waves Rederived . . . . . ... ... ... ......

6.3 Non-Adiabatic Berry Phase . . . . . . ... ... .. ... .....
6.3.1 Derivation of the Aharonov-Anandan Phase . . . .. .. ..
6.3.2 Time Evolution in Harmonic Oscillator . . . . . . . ... ..

Interference in Phase space

7.1 QOutlineoftheIdea . . . . . . . . . . . . ... ... ... ...

7.2 Derivation of Area-of-Overlap Formalism . . . . . . ... ... ...
7.2.1 Jumps Viewed From Position Space . . . . . .. .. ... ..
7.2.2 Jumps Viewed From Phase Space . . . . . ... ... .. ..

7.3 Application to Franck-Condon Transitions . . . ... ... .....

7.4 Generalization . . . . . . . . . ... .. e

Applications of Interference in Phase Space

8.1 Connection to Interference in Phase Space . . . . . ... ... ...

8.2 Energy Eigenstates . . . . . . . ... . .. .. ..o

8.3 Coherent State . . . . . . . . . . o i
8.3.1 Elementary Approach . . . ... ... ............



X1v Contents
8.3.2 Influence of Internal Structure . . . . . . . . ... ... ... 212
84 Squeezed State . . . . . . .. ..o Lo 213
8.4.1 Oscillations from Interference in Phase Space . . . . . . .. 213
8.4.2 Giant Oscillations . . . . . ... ... ... ... ... 216
8.4.3 Summary . . ... ... L e 218
8.5 The Question of Phase States . . . . . .. ... .. ......... 221
8.5.1 Amplitude and Phase in a Classical Oscillator . . . . . . . . 221
8.5.2 Definition of a Phase State . . . . . ... ... ... .... 223
8.5.3 Phase Distribution of a Quantum State . . . . . . . .. ... 227
9 Wave Packet Dynamics 233
9.1 What are Wave Packets? . . . . . . . . . . . ... ... 233
9.2 Fractional and Full Revivals . . . . .. ... ... .. ........ 234
9.3 Natural Time Scales . . . . . . . . . . .. .. ... ... ..... 237
9.3.1 Hierarchy of Time Scales . . . . . . .. ... ... ...... 237
9.3.2 Generic Signal . . . . . ... L Lo 239
94 New Representations of the Signal . . . . . ... ... ... ..., 241
9.4.1 The Early Stage of the Evolution . . . . ... ... ... .. 241
9.4.2 Intermediate Times . . . . . . .. ... ... . ........ 244
9.5 Fractional Revivals Made Simple . . . . . .. .. ... .. ..... 246
9.5.1 Gauss SUIMS . . . o« v v v v v e e e e e 246
9.5.2 Shape Function . . . . . . .. .. ... ... ... ... 246
10 Field Quantization 255
10.1  Wave Equations for the Potentials . . . ... ... ... ...... 256
10.1.1  Derivation of the Wave Equations . . . . . .. ... ... .. 256
10.1.2  Gauge Invariance of Electrodynamics . . . . . . .. ... .. 257
10.1.3  Solution of the Wave Equation . . . .. .. .. ... .... 260
10.2 Mode StructureinaBox . . . .. ... .. Lo oo 262
10.2.1  Solutions of Helmholtz Equation . . . . . . . ... ... .. 262
10.2.2  Polarization Vectors from Gauge Condition . ... ... .. 263
10.2.3  Discreteness of Modes from Boundaries . . . . . . .. .. .. 264
10.2.4 Boundary Conditions on the Magnetic Field . . . . . .. .. 264
10.2.5 Orthonormality of Mode Functions . . . . . . .. ... ... 265
10.3 The Field as a Set of Harmonic Oscillators . . . . . . .. ... ... 266
10.3.1 Energy in the Resonator . . . . . ... ... ... ...... 267
10.3.2  Quantization of the Radiation Field . . . . . . . ... .. .. 269
104 The Casimir Effect . . . . . . . . ... .. . o oL, 272
10.4.1  Zero-Point Energy of a Rectangular Resonator . . . . . . . . 272
10.4.2  Zero-Point Energy of Free Space . . . . . . ... ... ... 274
10.4.3  Difference of Two Infinite Energies . . . . . . . . . ... .. 275
10.4.4  Casimir Force: Theory and Experiment . . . . . . . . .. .. 276
10.5 Operators of the Vector Potential and Fields . . . . ... ... ... 278
10.5.1  Vector Potential . . . . .. ... ... ... ... ..., 278
10.5.2 Electric Field Operator. . . . . . . . .. .. .. ... .... 280

10.5.3 Magnetic Field Operator . . . . . ... ... ... .. ..., 281



10.6

Contents

Number States of the Radiation Field
10.6.1 Photons and Anti-Photons
10.6.2 Multi-Mode Case . . . . . .. ... ... ... ... ... .
10.6.3  Superposition and Entangled States

..............

11 Field States

11.1

11.2

11.3

Properties of the Quantized Electric Field . . ... ... ... ...
11.1.1 Photon Number States . . . . .. ... ... .........
11.1.2  Electromagnetic Field Eigenstates . . . . . . ... ... ...

Coherent States Revisited . . . . . . ... ... ... ........
11.2.1  Eigenvalue Equation . . . . ... ... ............
11.2.2  Coherent State as a Displaced Vacuum . . . . . . . ... ..
11.2.3  Photon Statistics of a Coherent State . . . . . .. ... ...
11.2.4  Electric Field Distribution of a Coherent State . . . . . . . .
11.2.5  Over—completeness of Coherent States . . . ... ... ...
11.2.6  Expansion into Coherent States . . . . . ... ........
11.2.7  FElectric Field Expectation Values . . . . . .. ... ... ..

Schrédinger Cat State . . . . . .. ... ... ... ... ...,
11.3.1  The Original Cat Paradox . . .. ... ... ... ......
11.3.2  Definition of the Field Cat State . . . . .. ... ... ...
11.3.3  Wigner Phase Space Representation . . ... ... ... ..
11.3.4 Photon Statistics . . . . . . . ... .. ... .. ... ...,

12 Phase Space Functions

12.1

12.2

12.3

12.4

There is more than Wigner Phase Space . . . ... ... ... ...
12.1.1 Who Needs Phase Space Functions? . .. ... ... ....
12.1.2  Another Description of Phase Space . . . . . ... ... ..

The Husimi-Kano Q-Function . . ., . . ... .. ..........
12.2.1  Definition of @-Function . . . . . . ... .. ... ... ...
12.2.2  @-Functions of Specific Quantum States . . . .. ... ...

Averages Using Phase Space Functions . . . . . ... .. ... ...
12.31  Heuristic Argument . . . . . .. . .. ... L L.
12.3.2 Rigorous Treatment . . . ... ... ... ... .......

The Glauber-Sudarshan P-Distribution . . . . . . . ... ... ...
12.41  Definition of P-Distribution . . .. .. .. .. ... .. ...
12.4.2  Connection between - and P-Function . . ... ... ...
124.3  P-Function from @-Function . . . . . .. ... ... ... ...
12.4.4 Examples of P-Distributions . . . . . . .. .. ... .....

13 Optical Interferometry

13.1

13.2

Beam Splitter . . . . . . . ... ...
13.1.1  Classical Treatment . . . . . . ... ... ... .......
13.1.2 Symmetric Beam Splitter . . . . . ... ... .. ... ...
13.1.3  Transition to Quantum Mechanics . ... .. ... ... ..
13.1.4  Transformation of Quantum States . . . . ... ... ....
13.1.5 Count Statistics at the Exit Ports . . . . . . . ... .. ...

Homodyne Detector . . . . . . . ... ... ... .. ......



XVI

Contents

13.2.1 Classical Considerations . . . . . . . .« .« ¢« oo oo 357
13.2.2  Quantum Treatment . . . . .. . ... ... ... 358

13.3  Eight-Port Interferometer . . . . . . . ... ... 361
13.3.1 Quantum State of the Output Modes . . . . . .. ... ... 361
13.3.2 Photon Count Statistics . . . . . . . . . . .« ... 363
13.3.3  Simultaneous Measurement and EPR . . . . . . . ... ... 365
13.3.4 Q-Function Measurement . . . . ... ... ... ...... 367

13.4 Measured Phase Operators . . . . . . - - « « + « o oo 370
13.4.1 Measurement of Classical Trigonometry . . . ... .. ... 370
13.4.2 Measurement of Quantum Trigonometry . . . . .. ... .. 372
13.4.3 Two-Mode Phase Operators . . . . . . . . ... ... ... 374

14 Atom-Field Interaction 381
14.1 How to Construct the Interaction? . . . .. ... ... . ... ... 382
14.2  Vector Potential-Momentum Coupling . . . . . . . . ... ... .. 382
14.2.1  Gauge Principle Determines Minimal Coupling . . . . . .. 333
14.2.2 Interaction of an Atom witha Field. . . . . .. .. ... .. 386

14.3 Dipole Approximation . . . . . . . ... ..o e 389
14.3.1  Expansion of Vector Potential . . . . . ... ... ...... 389
14.3.2 A-p-Interaction . . . . . . ... 390
14.3.3  Various Forms of the A - §Interaction . . .. ... ... .. 390
14.3.4 Higher Order Corrections . . . . . . ... .- 392

14.4 Electric Field-Dipole Interaction . . . . . . . . . . ..« ... 393
14.4.1 Dipole Approximation . . . . . . .. ..o 393
14.4.2 Rontgen Hamiltonians and Others . . . . ... .. ... .. 393

14.5 Subsystems, Interaction and Entanglement . . . . . .. ... ... 395
146 Equivalenceof A-Fand 7-E . .. ... ... ... 396
14.6.1 Classical Transformation of Lagrangian . . . . . . . . .. .. 397
14.6.2 Quantum Mechanical Treatment . . . ... . ... ... .. 399
14.6.3 Matrix elements of A -p and 7 E ............... 399

147 Equivalence of Hamiltonians H") and H W 400
14.8  Simple Model for Atom-Field Interaction . . . . .. .. ... . ... 402
14.8.1  Derivation of the Hamiltonian . . . . . . ... ... ... .. 402
14.8.2 Rotating-Wave Approximation . .. .. ... .. ...... 406

15 Jaynes-Cummings-Paul Model: Dynamics 413
15.1 Resonant Jaynes-Cummings-Paul Model . . . ... ... ...... 413
15.1.1 Time Evolution Operator Using Operator Algebra . . . . . . 414
15.1.2  Interpretation of Time Evolution Operator . . . . . ... .. 416
15.1.3  State Vector of Combined System . . . . . . ... ... ... 418
15.1.4 Dynamics Represented in State Space . . .. ........ 418

152 Roleof Detuning . . . . . . .« v v e oo 420
152.1 Atomicand Field States . . . . . . .. ... oo 420
15.2.2 Rabi Equations . . . . . .« .« oo 422

15.3  Solution of Rabi Equations . . . . . . .. ... ..o 423

15.3.1 Laplace Transformation . . . . ...« « oo ooo oo 424



Contents

15.3.2  Inverse Laplace Transformation
15.4 Discussion of Solution . . . . . . . . ... ... .. ... ......
15.4.1  General Considerations . . . . . . . .. .. ... .. .....
15,42 Resomant Case . . ... .. .. .. ... ..
154.3 FarOff-Resonant Case . . . . . . ... ... ... ......

16 State Preparation and Entanglement
16.1 Measurements on Entangled Systems . . . . ... .. ... .....
16.1.1 How to Get Probabilities . . . . . . . ... ... ... ....
16.1.2  State of the Subsystem after a Measurement, . . . . . . . . .
16.1.3 Experimental Setup . . . . ... .. ... ... ... ...
16.2 Collapse, Revivals and Fractional Revivals . . . . .. ... ... ..
16.2.1  Inversion as Tool for Measuring Internal Dynamics . . . . .
16.2.2  Experiments on Collapse and Revivals . . . ... ... ...
16.3 Quantum State Preparation . . . .. ... ... ...........
16.3.1  State Preparation with a Dispersive Interaction . . . . . . .
16.3.2  Generation of Schrédinger Cats . . . . . .. ... ... ...
16.4 Quantum State Engineering . . . . . . .. ... ... .. ... ...
16.4.1  Outline of the Method . . . . . . . ... ... ... . ....
16.4.2 Inverse Problem . . . . . . . . ... ... ... Lo
16.4.3 Example: Preparation of a Phase State . . . . . . . ... ..

17 Paul Trap
17.1 Basics of Trappinglons . . . . . . . ... ... L oo
17.1.1  No Static Trapping in Three Dimensions . . . . . . . . . ..
17.1.2 Dynamical Trapping . . . . . . . . . . ... ... . ... ..
172 Laser Cooling . . . . . . . . . . . .. ..o
173 MotionofanJoninaPaul Trap. . . . . . .. .. ... ... ....
17.3.1 Reduction to Classical Problem . . . . . .. ... . ... ..
17.3.2  Motion as a Sequence of Squeezing and Rotations . . . . . .
17.3.3  Dynamics in Wigner Phase Space . . . . . . . ... ... ..
17.3.4 Floquet Solution . . . . .. . ... ... ... ... ..
17.4 Model Hamiltonian . . . . . . .. ... ... 0oL
17.4.1  Transformation to Interaction Picture . . .. ... ... ..
17.4.2 Lamb-Dicke Regime . . . ... .. .. ... ... ......
17.4.3  Multi-Phonon Jaynes-Cummings-Paul Model . . . . .. ..
17.5 Effective Potential Approximation. . . . . . . . ... ... .. ...

18 Damping and Amplification
18.1° Damping and Amplification of a Cavity Field . .. ... ... ...
18.2 Density Operator of a Subsystem . . . . . . ... ... .. .....
18.2.1  Coarse-Grained Equation of Motion . . . . . . . .. ... ..
18.2.2 Time Independent Hamiltonian . . . . . . ... .. .. ...
18.3 Reservoir of Two-Level Atoms . . . . . . . .. .. ... .......
18.3.1 Approximate Treatment . . . . .. ... ... ........
18.3.2  Density Operator in Number Representation . . . . . . . ..
18.3.3 Exact Master Equation. . . . . . . ... ... .. .. .. ..



XVIII Contents

1834 Summary . . . . . ... ... e 522
184 One-Atom Maser . . . . . . . . . v ittt 522
18.4.1 Density Operator Equation . . . ... ... ... ...... 523
18.4.2 Equation of Motion for the Photon Statistics . ... .. .. 524
18.4.3 Phase Diffusion . . . . . . ... ... ... .. e 529
18.5 Atom—Reservoir Interaction . . ... ... .. ... ... ...... 532
18.5.1 Model and Equation of Motion . . ... ... ........ 532
18.5.2  First Order Contribution . . . . . . . . . . ... ... .... 533
18.5.3 Bloch Equations . . . .. ... ... ... . ... .... 535
18.5.4 Second Order Contribution . . . .. ... ... ... .... 537

1855 Lamb Shift . .. ... ... ... ... .. .. 0. 539

18.5.6  Weisskopf-Wigner Decay . . . . . . . . .. ... ... .... 540

19 Atom Optics in Quantized Light Fields 549
19.1  Formulation of Problem . . . . . ... ... ... ... ....... 549
19.1.1 Dynamics . . . . . . . ..o 549
19.1.2  Time Evolution of Probability Amplitudes . . . . . . .. .. 552

19.2  Reduction to One-Dimensional Scattering . . . .. ... .. .. .. 554
19.2.1  Slowly Varying Approximation . . ... .. ... ... ... 554
19.2.2 From Two DimensionstoOne . . . . . . ... ... ..... 555
19.2.3 State Vector . . . . . . . .. ... 556

19.3 Raman-Nath Approximation . . . . . .. ... .. ... .. ..... 557
19.3.1  Heuristic Arguments . . . . . .. ... ... ... 557
19.3.2  Probability Amplitudes . . . . ... .. .. ... ... ... 958

19.4 Deflectionof Atoms . . . . . . . . . ... 559
19.4.1  Measurement Schemes and Scattering Conditions . . . . . . 559
19.4.2 Kapitza-Dirac Regime . . . . .. .. ... ... ... .. 562
19.4.3  Kapitza-Dirac Scattering witha Mask . . . ... . ... .. 568

19.5 Interference in Phase Space . . . . .. .. ... ... ... ..... 571
19.5.1 How to Represent the Quantum State? . . . . . . .. .. .. 572
19.52 AreaofOverlap. . . . . . . . . . .. ... .. .. 572
19.5.3  Expression for Probability Amplitude . . . . . . . ... ... 573

20 Wigner Functions in Atom Optics 579
20.1 Model . . ... e e e 579
20.2 Equation of Motion for Wigner Functions . . . . . ... ... ... 581
20.3 Motionin Phase Space . . . . . . ... ... oL 582
20.3.1 Harmonic Approximation . . . ... ... ... ... .... 583
20.3.2 Motion of the Atomin the Cavity . . . . .. .. .. ... .. 583
20.3.3 Motion of the Atom outside the Cavity . . . . . .. ... .. 585
20.3.4  Snap Shots of the Wigner Function . . . . . . .. P 586

204 Quantum Lens . . .. . .. . ... ... oL 587
20.4.1 Distributions of Atoms in Space . . . . . . . ... ... ... 587
20.4.2 Focal Length and Deflection Angle . . . . .. ... ..... 589

20.5 Photon and Momentum Statistics . . . . . .. ... ... ... ... 590

20.6 Heuristic Approach . . . . . . ... .. ... . o 592



Contents XIX

2061 Focallength . .. ... ... .. ... .. .......... 592
20.6.2 Focal Size . . . . . . . . . ..o 594
Energy Wave Functions of Harmonic Oscillator 597
A1l Polynomial Ansatz . . . . ... ... ... ..o 597
A2  Asymptotic Behavior . . . . . . ... oo 599
A21  Energy Wave Function as a Contour Integral . . . . . . ... 600
A.2.2 Evaluation of the Integral I, . . ... .. .......... 600
A2.3  Asymptotic Limitof f,, . . .. ... .. ... oL 603
A24  Bohr’s Correspondence Principle . . . .. ... ... .... 603
Time Dependent Operators 605
B.1  Caution when Differentiating Operators . . . . . . ... ... ... 605
B2 TimeOrdering . .. . . .. . . . . . e 606
B.2.1 Product of Two Terms . . . . . . . . . . .. . ... ... .. 607
B.2.2 Product of n Terms . . . . . . . .« . o v i it 608
Siifimann Measure 611
C.1  Why Other Measures Fail . . . ... ... ... ... ........ 611
C.2 One Way out of the Problem . . ... ................ 612
C.3  Generalization to Higher Dimensions . . . . . ... ... .. .... 613
Phase Space Equations 615
D.1  Formulation of the Problem . . . . . . . .. ... ... ....... 615
D.2  Fourier Transform of Matrix Elements . . . . . . ... ... .... 616
D.3  Kinetic Energy Terms . . . . . . . . . . . . oo 617
D.4  Potential Energy Terms . . . . . . . . ... ... .. ... ... 619
D5 SUmMMAaTy . . .+« o o o v v e e e e e e e e e e e e 620
Airy Function 621
E.1 Definition and Differential Equation. . . . . . . .. ... ... ... 621
F.2  Asymptotic Expansion . . . . . .. ... ..o 622
E.2.1 Oscillatory Regime . . . . . . . . . ... ... ... 623
E.2.2 Decaying Regime . . . . . . . ... ... . ... .. ... .. 624
E.23 Stokes Phenomenon . . . . . . . ... 0L 625

F Radial Equation 629
Asymptotics of a Poissonian 633
H Toolbox for Integrals 635
H.1  Method of Stationary Phase . . . . . .. ... ... ... ...... 635
H.1.1 One-Dimensional Integrals . . . . ... ... ......... 635
H.1.2 Multi-Dimensional Integrals . . . . . . . . ... ... .. .. 637

H.2 CornuSpiral . . . . .« i i 639



