N

taimization Techniques

by Building Population-based Probabilistic Models:
From Algorithms to Applications

=T MBI RBREIIEK

MNSERINFE

ZHeE

990 00




Optimization Techniques by Building
Population-based Probabilistic Models:
From Algorithms to Applications

HT AR R AR AL
PS8 A

£ B &F

Y EZAAY mmit



mERE
PRGN T RAEE RS AT RO EA S, A Z 68 I =R LR
FE T LR AT R . TEICEE R B IR A ISR T MR — 2SR B9 4 A 46 T B B i B B R S
I, BIENRT ST E R E AR BT IS 1 5 GU i) — 2 R Zh 13 R SE 0] & o3 A
TR B LR A st s o

BB EM 4% E (CIP) iR

H TR R AR A B AR B BN . 3 S/
LREE. — . LASE K H R, 2010

ISBN 978 —7 —313 - 06369 — 4

[.OF:-- 0.0%- 0. .OBFHEIEEES
~#3r V. DTP301.6

A B A B 454 CIP 3% (2010) 58 056262 5

BETHESREBANAAER: AEZ2IMA
Z B ¥

X @ Rd A NIRRT
( EEHEERE 9515 HRBIARED 200030)
Hi%: 64071208 HARA: EHERE
PR KNFERARER 2EFEEESHE
FA, 787mm x960mm  1/16  EI3K. 10.25 F#. 191 FF
2010464 A1 AR 2010 4F 4 A4 1 EDR
ISBN 978 -7 —313 —06369 ~4/TP g4 : 48.00 7%

WA A  RBULSE




Preface

The study and use of population-based probabilistic modeling techniques for
optimization have been successfully developed during the last decade. Among these
techniques, Genetic algorithms ( GAs) and Estimation of Distribution Algorithms
(EDAs) have been the reference.

This book, comprised of a total of 9 chapters, covers broadly important spectrum
subjects ranging from fundamental theories of GAs and EDAs, development of a new
type of EDAs and applications of EDAs to efficiency enhancements of EDAs. In
chapter 1, GA fundamentals are discussed. We begin with what is usually the most
critical decision in any application, namely that of deciding how best a candidate
solution is represented to the algorithm. We then describe variation operators suitable
for different types of representation, before turning our attention to the selection and
replacement mechanisms that are used to manage the populations of solutions. In
chapter 2, the EDAs proposed for the solution of combinatorial optimization problems
and optimization in continuous domains are reviewed. Different approaches for EDAs
have been ordered by the complexity of interrelations so that they are able to express.
An empirical comparison of EDAs in binary search spaces is covered in chapter 3.
Furthermore , techniques of implementations of a new type of EDAs are studied in
chapter 4. The experimental results of applying EDAs to some optimization problems
are shown in chapter 5. Chapter 6, 7 and 8 bring together some EDAs approaches to
optimization problems in the fields of graph matching and resource management.
Finally, chapter 9 provides an overview of different efficiency-enhancement techniques
for EDAs.

This book should be of interested to theoreticians and practitioners alike, and is a
must — have resources for those interested in optimization in general, and genetics and
estimation of distribution algorithms in particular. Also engineers who, in their daily
life, face real-world optimization problems can derive benefit from the reading of the
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book. Moreover, this book may be used by graduate students in computer science and
by people interested in the development of these new techniques that, in the following

years, will provide us with interesting and appealing challenges.

Qun Jiang
College of Computer Science and Engineering
Chonggqing University of Technology
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Chapter 1
Fundamentals and Literature

1.1 Optimization Problems

In a broader sense, a genetic algorithm is any population-based model that uses
selection and recombination operators to generate new sample points in a search space.
This type of algorithm is often viewed as function optimizers, and the range of
optimizing problems to which genetic algorithms have been applied is quite broad.
Usually, considering a parameter optimization problem we must optimize a set of
variables either to maximize some target such as profit, or to minimize cost or some
measure of error. We might view such a problem as a black box with a series of
control dials representing different parameters; the only output of the black box is a
value returned by an evaluation function indicating how well a particular combination
of parameter settings solves the optimization problem. The goal is to set the various
parameters so as to optimize some output. In more traditional terms, we wish to
minimize ( or maximize ) some function F(X,, X,, ---, X,). There are many
optimization methods that have been developed in mathematics and operations
research. What role do genetic algorithms play as an optimization tool? Genetic
algorithms are often described as a global search method that does not use gradient
information. Thus, non-differentiable functions as well as functions with multiple
local optima represent classes of problems to which genetic algorithms might be
applied. Genetic algorithms, as a weak method, are robust but very general. If there
-exists a good specialized optimization method for a specific problem, then genetic
algorithm may not be the best optimization tool for that application.

In a strict interpretation, the genetic algorithm refers to a model introduced and
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investigated by John Holland (1975) and by students of Holland. It is still the case
that most of the existing theory for genetic algorithms applies either solely or primarily
to the model introduced by Holland, as well as variations on what will be referred to
in this chapter as the canonical genetic algorithm. Recent theoretical advances in
modeling genetic algorithms also apply primarily to the canonical genetic algorithm
(Vose, 1993).

1.2 Canonical Genetic Algorithm

The canonical genetic algorithm has a binary representation, fitness proportionate
selection, a low probability of mutation, and an emphasis on genetically inspired
recombination as a means of generating new candidate solutions. This is summarized
in Table 1.1

Table 1.1 Sketch of the Canonical GA

Representation Bit-string
Recombination 1-Point crossover
Mutation Bit flip

Parent selection Fitness proportional
Survival selection Generational

To illustrate this, we show the details of one selection - reproduction cycle on a
simple problem [ 1], namely that of maximizing the values of x* for x in the range of
0 ~31. Using a simple 5-bit binary encoding, Table 1.2 shows a random initial
population of four genotypes, the corresponding phenotype and their fitness values.
The column Pr ob, shows the probability that an individual i e {1, 2, 3, 4} is chosen
to be a parent, which for fitness proportionate selection is Pr ob, = f;/ 2 f- The
number of parents is the same-as the size of our population, so the expected number of
copies of each individual after selection is f,/ f_ As can be seen, these numbers are not
integers; rather they represent a probability distribution, and the mating pool is
creaked by making the number of random choices to sample from this distribution.

The column “Actual count” stands for the number of copies in the mating pool, i.e. ,
it shows one possible outcome.
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Table 1.2 The x* example, 1: initialization, evaluation, and parent selection

String No. Initial population |x ValuelFitnessf (x) =x*| Pr ob, | Expected | Actual count
1 01101 12 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0. 06 0.22 0
4 10011 19 361 0.31 1.23 1
1,170 1 4 4
Sum Average Max 293 0.25 1 1
576 0.49 1.97 2

The selection individuals are paired at random, and for each pair a random point
along the string is chosen. Table 1.3 shows the results of crossover on the given
mating pool for crossover points after the fourth and second genes, respectively,

together with the corresponding fitness values.

Table 1.3 The x* example, 2: crossover, and offspring evaluation

String No. Mating pool { Crossover point | Offspring after xover |x Value|Fitness f(x) = x°
1 o11011 4 01100 12 144
2 110010 4 11001 25 625
3 111000 2 11011 27 729
4 101011 2 10000 16 256
1,754
Sum Average Max 439
729

In canonical GA mutation works by generating a random number in each bite
position, and comparing it to affixed low (e. g. 0.001) value, usually called the
mutation rate. If the random number is below that rate, the value of the gene in the
corresponding position is flipped. In our example we have 4 x 5 = 20 genes, and
Table 1. 4 shows the outcome of mutation when the first and eighteenth values in our
sequence of random numbers are below the bitwise mutation probability. In this case,
the mutation shown happened to have caused positive changes in fitness, but we
should emphasis that in later generations, as the number of “ones” in the population
rises, mutation will be on average (but not always) deleterious. Although manually
engineered , this example shows a typical progress: the average fitness grows from 293
to 634. 5, and the best fitness in the population from 576 to 784 after crossover and
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mutation.
Table 1.4 The x* example, 3. mutation, and offspring evaluation
String No. Offspring after xover | Offspring after mutation { x Value | Fitness f(x) = x°
1 01100 11100 28 784
2 11001 11001 25 625
3 11011 11011 27 729
4 10000 10100 20 400
Sum Average Max 2,538
634.5
784

1.3 Individual Representations

The first step in the implementation of any genetic algorithm is to decide on a
genetic representation of a candidate solution to the problem. This involves defining
the genotype and the mapping from genotype to phenotype.

When choosing a representation, it is important to choose the “ right”
representation for the problem being solved. Getting the representation is one of the
most difficult parts of designing a good evolutionary algorithm. Often this only comes
with practice and a good knowledge of the application domain.

1.3.1 Binary Representations

The first representation we look at is one of the simplest — the binary. This is
one of the earliest representations, and historically many GAs have mistakenly used it
almost independently of the problem they were trying to solve. Here the genotype
consists simply of a string of binary digits — a bit-string.

For a particular application we have to decide how long the string should be, and
how we will interpret it to produce a phenotype. In choosing the genotype-phenotype
mapping for a specific problem, one has to make sure that encoding allows that all
possible bit strings denote a valid solution to the given problem and that, vice versa,
all possible solutions can be represented.

For some problems, particularly those concerning Boolean decision variables, the

genotype-phenotype mapping is natural, but frequently bit-strings are used to encode
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other non-binary information. For example, we might interpret a bit-string of length
80 as ten 8 — bit integers. Usually this is a mistake, and better results can be obtained
by using the integer or real-valued representations directly.

One of the problems of coding numbers in binary is that different bits have
different significance. This can be helped by using Gray coding, which is a variation
on the way that integers are mapped on bit strings. The standard method has the
disadvantage that the Hamming distance between two consecutive integers is often not
equal to one. If the goal is to evolve an integer number, you would like to have the
chance of changing a 7 into an 8 equal to that of changing it to a 6. The chance of
changing 0111 to 1000 by independent bit-flips is not the same, however, as that of
changing it to 0110. Gray coding is a representation which ensures that consecutive

integers always have Hamming distance one.

1. 3.2 Integer Representations

Binary representations are not always the most suitable if our problem more
naturally maps onto a representation where different genes can take one of a set
values. One obvious example of when this might occur is the problem of finding the
optimal values for a set of variables that all take integer values. These values might be
unrestricted, or might be restricted to a finite set. for example, if we are trying to
evolve a path on square grid, we might restrict the values to the rest {0, 1, 2, 3}
representing { North, East, South, West}. In either case an integer encoding is
probably more suitable than a binary encoding. When designing the encoding and
variation operators, it is worth considering whether there are any natural relations
between the possible values that an attribute can take. This might be obvious for
ordinal attributes such as integers, but for cardinal attributes such as the compass

points above, there may not be a natural ordering.

1. 3.3 Real-Valued Representations

Often the most sensible way to candidate solution to a problem is to have a string
of real values. This occurs when the values that we want to represent as genes come
from a continuous rather than a discrete distribution. Of course, on a computer the
precision of these real values is actually limited by the implementation, so we will

refer to them as floating-point numbers. The genotype for a solution with k& genes is
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now a vector (x,, -, %,) withx;, € R,

1.3.4 Permutation Representations

Many problems naturally take the form of deciding on the order in which a
sequence of events should occur. While other forms do occur ( for example decoder
functions based on unrestricted integer representation in Ref. [2, 3]) or “floating
keys” based on real-valued representations in Ref. [4, 5] ), the most natural
representation of such problems is as a permutation of a set of integers. One immediate
consequence is that while an ordinary GA string allows numbers to occur more than
once, such sequences of integers will not represent valid permutations. It is clear that
we need new variation operators to preserve the permutation property that each possible
allele value occurs exactly once in the solution.

When choosing appropriate variation operators it is also worth bearing in mind
that there are actually two classes of problems that are represented by permutations. In
the first of these, the order in which events occur is important. This might happen
when the events use limited resources or time, and a typical example of this sort of
problem is the “job shop scheduling” problem.

An alternative type of order-based problems depends on adjacency, and is
typified by the traveling sales person problem. The problem is to find a complete tour
of n given cities of minimal length. The search space for this problem is very big:
there are (n ~ 1) | different routes possible for n given cities. For n = 30 there are
approximately 10* different tours. We label the cities 1, 2, ---, n. One complete tour
is a permutation of the cities, so that for n = 4, the routes [1, 2, 3, 4] and
(3, 4, 2, 1] are both valid. The difference from order-based problems can clearly be
seen if we consider that the starting point of the tour is not important, thus [1,2, 3,
4], [2. 3. 4. 1], [3,4,1,2], and {4,1,2, 3] are all equivalent. Many
examples of this class are also symmetric, so that [4, 3, 2, 1] and so on are also
equivalent.

Finally, we should mention that there are two possible ways to encode a
permutation. In the first ( most commonly used) of these the i® element of the
representation denotes the event that happens in that place in the sequence (or the i"
destination visited ). In the second, the value of the i™element denotes the position in
the sequence in which the i"event happens. Thus for the four cities [ A, B, C, D],
and the permutation [3, 1, 2, 4], the first encoding denotes the tour [C, A, B, D]
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and the second [B, C, A, D].

1.4 Mutation

Mutation is the generic name given to those variation operators that use only one
parent and create on child by applying some kind of randomized change to the
representation. The form taken depends on the choice of encoding used, as does the
meaning of the associated parameter, which is often referred to as the mutation rate.
In the descriptions below we concentrate on the choice of operators rather than of

parameters.

1.4.1 Mutation for Binary Encodings

Although a few other schemes have been occasionally used, the most common
mutation operator used for binary encodings considers each gene separately and allows
each bit to flip with a small probability p,,. The actual number of values changed is
thus not fixed, but depends on the sequence of random numbers drawn, so for an
encoding of length L on average LP, values will be changed. In Fig. 1.1. this is
illustrated for the case where the third, fourth, and eighth random values generated are

less than the bitwise mutation rate p,,.

L1fof1fofofofofufo}—-—[1fofo]1]o]ofo]o]o]

Fig. 1.1 Bitwise mutation for binary encodings

A number of studies and recommendations have been made for the choice of
suitable values for the bitwise mutation rate p_, and it is worth noticing at the outset
that the most suitable choice to use depends on the desired outcome. For example,
does the application require a population in which all members have high fitness, or
simply that one highly fit individual is found? However, most binary coded GAs use
mutation rates in a range such that on average between one gene per generation and
one gene per offspring is mutated.

1.4.2 Mutation for Integer Encodings

For integer encodings there are two principal forms of mutation used, both of
which mutate each gene independently with user-defined probability p ..
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1.4.2.1 Random Resetting

Here the “bit-flipping” mutation of binary encodings is extended to “random
resetting” , so that with probability p a new value is chosen at random from the set of
permissible values in each position. This is the most suitable operator to use when the
genes encode for cardinal attributes, since all other gene values are equally likely to be
chosen.

1.4.2.2 Creep Mutation

This schema was designed for ordinal attributes and works by adding a small
value to each gene with probability p. Usually these values are sampled randomly for
each position, from a distribution that is symmetric about zero, and is more likely to
generate small changes than large ones. It should be noted that creep mutation requires
a number of parameters controlling the distribution from which the random numbers
are drawn, and hence the size of the steps that mutation takes in the search space.
Finding appropriate settings for these parameters may not be easy, and it is sometimes
common to use more than one mutation operator in tandem from integer based
problems. For example, in Ref [6] both a “big creep” and a “little creep” operators
are used. Alternatively, random resetting might be used with low probability, in
conjunction with a creep operator that tended to make small changes relative to the

range of permissible values.

1.4.3 Mutation for Floating-Point Encodings

For floating-point representations, it is normal to ignore the discretization imposed
by hardware and consider the allele values as coming from a continuous rather than a
discrete distribution, so the forms of mutation described above are no longer applicable.
Instead it is common to change the allele value of each gene randomly within its domain
given by a lower L, and upper U, bound, resulting in the following transformation:

{2y, =, %,9) — {x}, -+, x!), where x,, %/ € [L;, U;] two types can be
distinguished according to the probability distribution, from which the new gene values
are drawn; uniform and non-uniform mutation.

1.4.3.1 Uniform Mutation

For this operator the values of x| are drawn uniformly randomly from [ L;, U,].

This is the most straightforward option, analogous to bit-flipping for binary encodings
and the random resetting sketched above for integer encodings. It is normally used
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with a position-wise mutation probability.

1.4.3.2 Non-Uniform Mutation with a Fixed Distribution

Perhaps the most common form of non-uniform mutation used with floating-point
representations takes a form analogous to the creep mutation for integers. It is
designed so that usually, but not always, the amount of change introduced is small.
This is achieved by adding to the current gene value an amount drawn randomly from
a Gaussian distribution with mean zero and user-specified standard deviation, and then
curtailing the resulting value to the range [ L;,, U,] if necessary. The Gaussian (or
normal ) distribution has the property that approximately two thirds of the samples
drawn lie within one standard deviation. This means that most of the changes made
will be small, but there is nonzero probability of generating very large changes since
the tail of the distribution never reaches zero. It is normal practice to apply this
operator with the probability of one per gene, and instead the mutation parameter is
used to control the standard deviation of the Gaussian and hence the probability
distribution of the step sizes taken.

An alternative to the Gaussian distribution is use for a Cauchy distribution, which
has a “fatter” tail. That is, the probabilities of generating larger values are slightly

higher than for a Gaussian with the same standard deviation.
1.4.4 Mutation for Permutation Representations

For permutation representations, it is no longer possible to consider each gene
independently ; rather finding legal mutations is a matter of moving alleles around in
the genome. This has the immediate consequence that the mutation parameter is
interpreted as the probability that the string undergoes mutation, rather than that a
single gene in the string is altered. The three most common forms of mutation used for
order-based problems were first described in Ref, [7]. -

1.4.4.1 Swap Mutation

This operator works by randomly picking two positions ( genes) in the string and
swapping their allele values. This is illustrated in Fig. 1.2, where the values in

positions two and five have been swapped.

Lilefsfelsfefrfsfo]———[i]s[s]a]2]e]7]8]s]

Fig. 1.2 Swap mutation



