Rufe im0
SUPERPROCESSES ARISING FROM
INTERACTING STOCHASTIC FLOWS

= &
{

© Zhao Qiaoling

China Agricultural Science and Technology Press




Suppdrted by Publishing Foundation of Academic Work of Shanggiu Normal University

58
!

5 AR PR i R
SUPERPROCESSES ARISING FROM
INTERACTING STOCHASTIC FLOWS

© Zhao Qiaoling

China Agricultural Science and Technology Press



B HEmS% H ( CIP) #1iE

ARHERRPELE/ RHE . —Ibsl . Rk
Bla= 5 A H gL, 2008. 12
ISBN 978 -7 -80233 - 769 -5

.3 M. & M. XEEH -5 V. 0212

AR A B A3 CIP 2 diaA% 7+ (2008 ) 25 187950 5

REmE HE=z
R TARRA R

H O &  PERLEZEEAR R
EET N RE 125 Wifg4: 100081

B i (010) 82109704 ( %4F%R) (010) 82106630 ( 448 =3)
(010) 82109703 (FZE R EE)

# H  (010) 82106636

W it http: //www. castp. cn

% & HEWWEILEERTH ’5;,‘
B Rl % LR ERERARFEIEAH W
FF & 787 mmx1092 mm 1/16

ED #k 8

£ ¥ 220 TF

B % 20084FE 12 A% LR 2008 4F 12 A4 1 (REDRI
B 28.00 70

EAUERE - BED B




}Tv
¥
Y
1

Preface

Preface

This paper is divided into 7 chapters.

The central theme of these lectures is the construction and study of a new class of superpro-
cesses named as” supeQrgpesses arising from interacting stochastic flows” (ahbreviatgd to SAISF).

In Chapter 1 ~ Ch;&r 2, we will introduction some elementary theories about measure-val-
ued processes. ' |

In Chapter 3, we will construct a new class of superprocesses named as“superprocesses ari- .
sing from interacting stochastic flows” ( abbreviated to SAISF). These superprocesses are charac-

terized by their generators as:

FF, () = Frgy+ BF.(n); foranym e N,fe CURD™,

where F, (u) denotes the integral J ) fdu" and
(RH™

- SF () 1 8'F(u)
BF@) = | P w5 [ oo G bamtde)

8u()
1 m d azr‘. 1 m d az :
Gm = Ped [ 9% + — cP-‘l i —If—+ .
/ zijgfi#jp;-fla (x,fx,) alon! 2 s=1p§:1 () axt ox?
m d / Ly
(k) Lo
2.{ P2 (%) prest

This class of superprocesses is the unified setting of some new born classes of superprocesses
considered by many authors in their papers. Here we use the duality method developed by Daw-
son, Li and Wang' to prove their strbng Markov property and the technique of branching particle
system approximation to prove their existence. In the end of this chapter, we shall give some vari-
ance of this class of superprocesses.

In Chapter 4, we shall investigate its probabilistic properties. Firstly, we shall prove the
atomnic property of the SAISF if its parameters satisfies the condition that a*(x,x) =¢"" (x) for
any x € R in Section 4. 1. Secondly, we will deduce the stochastic partial differential equation
associated with l-dimensional SAISF in Section 4. 2. Thirdly, we will consider some rescaled limit
for the SAISF z:i.er some conditions.

In Chapter 5, we will use” piecing” technique to investigate the SAISF with branching mecha-
nism depending on population size and general superprocesses with branching mechanism depen-
ding on population size. The limit duality method and “ piecing” technique are main methods in
this chapter.

In Chapter 6, the stochastic flow of mappings generated by a Feller convolution semigroup on
a compact metric space is studied. This kind of flow is the generalization of superprocesses of sto~
chastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differenti-

al equations.

e
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gg SUPERPROCESSES ARISING FROM INTERACTING STOCHASTIC FLOWS

In Chapter 7, we reconstruct the superprocesses of stochastic flows by martingale method,
and prove that if and only if the infinitesimal particles never hit each other, then atomic part and
diffuse part of this kind of superprocesses will be also superprocesses of stochastic flows.

Zhao Qiaoling
February, 2008
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Chapter 1 From particle systems to measure-valued processes :

From particle systems to measure-valued
~ processes

In this chapter, we shall introduce two classes of measure-valued processes using only rather
elementary methods and in particular the method of moment measures. Our staring point is a class
of exchangeable finite particle systems and we have studied the limits of their normalized empirical
measures as the number of initial particles tends to infinity. The resulting limit process is the
Fleming-Viot probability-measure-valued process. Before this, we introduced the sitting of meas-
ure-valued Feller processes. The last two sections of this chapter provide a preliminary introduc-
tion to weak convergence of processes, martingale problems and branching particle systems, all of

which will be developed in some generality in subsequént chapters.

1.1 Measure-valued feller processes

Let (E, d) be a compact metric space, C(E) the space of continuous functions, £ = B(E)
the o - algebra of Borel subsets of E, and M, (E) the space of probability measures on E. We
denote by.be (resp. pbe ) the bounded (resp. nonnegative bounded) & - measurable functions
onE fy e M,(E)andf e be,we define{ u, f) =[; fdu. Note that M, (E) furnished with the

topology of weak convergence is a compact metric space[ where p,— if and only if (u, ,f)—

(uaf), ¥ [ ebC(E)].

Let D=D([0, ) ,M,(E)) be furnished with the usual Skorohod topology and X,: D —
M (E) X, (w) =(t) forw eD. Let & =c{X,.0ssst} , D=V =#(D), 9 =9, =
ﬂd@o For any & - stopping time 7,2, = {Ac Z:AN{r<t} €%, VY. Then(D, (Z2) 20,

DA(X,) 50 )‘Aeﬁnes the canonical probability — measure-valued process.

Becall that D and M, (D) are both Polish spaces. f P ¢ M, (D) ,and F e b%, we let
P(F)=[, FdP(we sometimes also use the notation E(X) to denote the expectation of a random
variable X). ;

For t=0, define II,: M, (D) — M, (M, (E)) by II, P = PoX". Then for fixed P &
M, (D) ,the mapping t — II, P € D([0, o ) ,M,(M,(E))). (N. B. However the mapping
P—II. P is not continuous from M, (D) to D([0, o ) ,M,(M,(E))).)

By an M, (E) - valued stochastic process we mean a family of probability measures | P,:p
e M\(E)| on (D, %, (9),,,) such that

\ }gg{o
{ L%ﬂ.



%g SUPERPROCESSES ARISING FROM INTERACTING STOCHASTIC FLOWS

(i) P(X (0) =u) = 1,thatis I, P, = §,

(ii) the mapping p — P, from M, (E) to M, (D) is measurable.

It is said to be time homogeneous strong Markov if for every { & | - stopping time 7 ,
pe M,(E),with P,(r<o) =1,

(iii) P,[F(X (1 +1)) l_@;} =T,F(X(t)),P, —a.s
forall Fe b8 (M,(E)), t = 0,where

T, F(IL)—P,.F(XU)) =f.§,(E)F(T))P(t,IL, dv). «*

The transition function is defined by p(t, g, + ) =IL P,( - ). Let(C (M,(E)) ’|| * || ) denote
the Banach space of continuous functions on M(E) with || ¥ || isgp |F () |."The process is a
Feller process if in addition T,:C(M,(E))—C(M,(E)),Yi>0and | T, F-F | — 0 as t—0.
Then {T,; =0} forms a strongly continuous semigroup of positive contraction operators on
(C(M,(E)), thatis,T, F=0if F=0and |T,F|| = | F | for F € C(M,(E)). Give a Feller
semigroup the strong infinitesimal generator is defined by

TF-
FBF ilill'([’l : . ( where the limit is taken in the norm topology) .

The domain ZX(.B) of .Bis the subspace of C(M, (E)) for which this limit exists. Since [ e -

TFdi eZ(HB) ifA >0and F e C(M(E)), it follgys that ZH(B) is dense in C(M,

(E)). A subspace &, C G .P) is a core for B if the closm'e of’the restriction of % to &, i
equal, to .%. v
Lemma 1. 1.1 Let % be the generator of a strongly contmuou.s contraction semigroup T, on

C (M,(E)). Let F, be a dense subspace of C (MI(E)) and G, CK .B). If T,: Dy—T, ,then it
is a core fof B.

(A similar statement is true for a semigroup S, defined on C (E), with generator A and
domazn D(A).) :

Proof [EK1,Ch.1,Prop.3.3]

In order to formulate an M, ( E) - valued Feller process we must first introduce some appro-
_ priate subspace of C (M, (E) which can serve as a core for the generator.

The algebra of polynomials,C,(M,(E) ) ,is defined to be the linear span of monomials of the
form _ , ' tl‘

t.
Fo () = ff (x)u(dx) "

= [ fn e ) )

where f € C(E").
The function F e C (M,(E)) is said to be differentiable if the limit

FO (usx) = %((f)—) gm(F(u+aa) F(M))/s-—F(prsS)l -0

exists for each ¥ € E and belongs to C (E) Yu € M,(E). The set of functions for which

2 ¢
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Chapter 1 From particle systems to measure-valued processes €

F (u3%) is jointly continuous in p and x is denoted by C'" (M, (E)).
The second derivative is defined by

) F (u) g
F(2) ; x, = 82 )23 —

Wi % 1) = G Iau(3) ™ 5o,00,
if it exists for each x and y and belongs to C(E x E) Vu € M,(E).

Let C* (M, (E)) denote the set of functions for which F™® (3%, ,x,) exists and is continu;
ous on M, (E) x E’t _

Lemma 1.1.2 {_1) C,(M,(E)) is dence in C (M,(E)) and convergence determzmng in
M,(M(E)). - ‘
(ii) Function in C,(M,(E)) are infinitely differentiable, and the Jirst and second derivatives are
given by ‘

Flp +£,8, +,8) |

g1 =& =0

oF, W)
o= DLl o ) )

Fy . (1) :
m = j=lz_,'aékkz=‘1L“.Lf(xl,.“’ xj-—l » X, x] #1y Ty X 15 Y xk+l b '"xn)ni;ﬁj ,,J..L(dx,)

Proof (i) The linear span of the space in question is an algebra of function on the compact
metric space M, (E). In order to verify that C,(M,(E) ) separates points it suffices to note that
e M (E) is uniquely determined by {{u, ¢ ) : pe C (E)}. The first part of the result is

then an immediate consequence of the Stone — Welerstrass theorem.

IffF (u)p, (du) -»f F (p,)p(dp,) as n — o for all F belonging to a dense subset of

C (M,(E)), then it is true for all F € C (M,(E)). This proves that C,(M,(E)) is conver-
gence determining in M, (M, (E)).
(ii) Follows by a.simple calculation.

1.2 Indepéndent particle systems:dynamical law of large numbers

Let S,: ¢= 0 be a Feller semigroup on the Banach space (C (E), || - || ) where || - | is
the supremum norm, with E compact. Then the domain D(A) of the infinitesimal generator A is a
dense subspace of C (E). We assume that there exists a separating algebra of function
é D,C D(A), S, D,C D, .
Conseql}ently b is a core for A (cf. Lemma 1.1.1).
Let P (¢, x, dy) denote the transition function of {S,}, that is,

Sf(x) = [ F(DP (1,2, dp), f e C ().

It will be convenient to work with a canonical version of the Feller process which will be
described in the following result. Let Dy = D([0,% ), E) denote the space of cadlag functions
from [0, ) into E. Then D, is a Polish space if it is furnished with the Skorhod topology.

Proposition 1. 2.1 et {S,} be a Feller semigroup on C(E) with E compact. Then

(a) For each x e E there exists a probability measure P, on B(D;) satisfying

i

lgﬁ“‘(
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%ﬁ SUPERPROCESSES ARISING FROM INTERACTING STOCHASTIC FLOWS

P(w(0) =x) =1, and fors < t, (1.2.1)
P.(f(o(t))lo(w(u) : u<s)) = (S,_,f)(w(s)), P, -as Y fe C(E).
(1.2.2)

(b) There exisis a standard probability space (Q, %, Q,) and a measurable mapping { * (E x
Q,e x F) — (D, B(D;)) ,such that for each x € E
Qllw:¢(x,w) € Bl)=P(B),YB € B(D,). (1.2.3)

Furthermore, { ( *+ , ) is continuous at x for Q, — a.e. w,for each x € E. o
The resulting measurable random function is denoted by (3,7, Q,, 1£ (2)} fox). (A standard
probability space is one which is isomorphic to [0, 1] with Lebesgue measure. )/

Proof (a) Givenx e E, the existence of P, satisfying (1. 2.2) is a standard result on the
existence of a cadlag version of the Feller process(e. g. [ Ekl Chapt. 4, Theorem 2.7] ).
(b) It can also be shown that the mapping x — P, from E to M, (D) is continuous when the lat-
ter is given the weak topology ( see Seation 2.1). Since the map x — P, is continuous, the
existence of a representation (Q,%, Q,, {¢ (x)},.5), £ : @ XE — D; such that
(i) foreachx €E, £ ( +, x) is measurable and has law P,
and '
(i) ¢ (w, * ) is continuous at x for @, — a.e. w,foreachx € E,
follows from the extension of Skorohod’s almost sure reprgzgwaﬁor} theorem due to Blackwell and
Dubins(1983). From this the existence of a jointly meastiralfle vérsion of ¢ follows by a standard
argument. '
A system of a N independent particles {Z (1) : ¢ = 0"} ={Z, (), ,2,(+)} each
undergoing an A — motion in E and with initial value 'Z;(0) having law y e M,(E) is then real-
ized on ((ExQ)", (u ® Q,)") by
Z(((ey @), ,(ey, wy)), t) =¢ (e, 0)(t), i=1,2, N,

. ‘ ((er, @), ,(ey, wy)) € (E xQ)7.
- Then Z (t) is an E" — valued Markov process with semigroup

SIS CGoryeeeym) = [ [ G )P Gy 3, d )P (1, 5y, dy) S & € ().

The semigroup {S) : t= 0} is strongly continuous on the closure of D] ( = algebra generated by

file))fu(xy) : fie Dy, i =1,2, - ,N}), whichis C (EN&and hence S is a Feller

semigroup associated with a process with valued in E". The corresphging generator is

AW = Z A, on D(A“”)c C (EY).
where A; denotes the action of A on the ith variable. Furthermore it easily follows that S¥:D}f—
D} and therefore D) is a core for A" .
The associated empirical measure process is given by
N
XV(t) =E(Z,(2), ,Zy(£))=N"'Y 8,5 € M,(E).

i=1

It will follow from Proposition 1.3.3 that X" ( - ) is also a Feller process with state space

4
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Chapter 1 From particle systems to measure-valued processes :

M,y (E) ,the space of measure consisting of atoms whose masses are multiples of 1/N and
contained in E. We will denote its generator by %y .
Let

DB =\F () =) feDg,ns N}

N
For F, , e D, (B4) andu,,,:N_'Z 8z,
ané‘l‘qv) —N_uz Zf (Zzl’ " i,,)

B 0N S WaCHEES

peP" h= Jk=1
where for 1 < k<n P denote the set of paninonsp 11, ,n} — {1, - k}.
BEF, () =lun, A7 +N_"2 Y 2 2 (APFP A ) (2, z,,)
k=lpepy Jp =1 py=

= FA(,,)f ([LN) + R(N, n, f)(llw)
and forp e P:,f(”)(zh,' 3, ) = f(z z ).

Since

JPl Pn

N

RN, n, f)(puw) = N2 Y X3 (AYF = A0F) (5, o5,),

ES1pePin=!  Ipes
it follows that [R(N, n, f) (ux) ! < ¢(n) [|f|| 4 ./N where for f e Dy, [|f | 0= SN +
max, max, .py || A £ || . Note that || S'f || 4,.< [l 4,, and therefore SY. Di—D;.

By the law of large numbers X" (0) = X (0) = p. Using the above expression for the gener-
ator we can then show that X¥(t) = X (t),which is a deterministic M, (E) - valued process

characterized as the unique solution of the weak equation
(X(1), /) =(X(0), /) + [ (X (), Afbds, ¥ f e D(A),

that is, formally, gj—i = A* X where A" denotes the adjoint of A.
This implies that < X (¢), f> = <X (0), §,f>.

This is the simplest example of a dynamical law of large numbers and is a degenerate case of the
Mckean — Vlasov limitof exchangeably interacting particle systems. For detailed developments on
the Mckean Ylasov (or mean — field) limit of interacting particle systems and the related phenom-
enon of propagetion of chaos the reader is referred to Giirtner(1988) , Léonard(1986) ,and Sznit-
man(1991).

1.3 Exchangeable particle systems

Let »/(N) denote the set of permutations of {1, ---,N|. A continuous function f ; E"— R
is said to be symmetric, f € Cm(EN), iff =7f, Vo e (N), where 5if (2, ,2y) =

b 'f(zm,"',zmv)~

5
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3 SUPERPROCESSES ARISING FROM INTERACTING STOCHASTIC FLOWS

Given z;,+-+,zy € E (not necessarily distinct) the associated empirical measure is defined
by

N
=a(z yer,zy) =N 2 o€ M, (E).
i=1l
The mapping = : E"— M, (E) is clearly o-( C,..(E")) ~measurable. On the other hand, given a

M
measure p = Y @b, + v € M, (E), with z,, -, zy distinet, and p nonatomic, let
i o

2 W) ={(z3a), (2 ay)} e (ExR,)¥, mod(AM)). The mappjig u — 3 (1)
is measurable from (M, (E) ,8(M,(E))) toUy_,(E x R , )¥where the latter is fumnished with
the smallest o — algebra containing o ( Cn(ExXR, M) for each M (cf. Theorem?. 4. 1. 1 (d)).
Consequently,if w € M, y(E), then the mapping u— ((z/; n,), -+, (z{3 n;)) where the z/, ---,
z, are the distinct locations of the atoms and the n, are their multiplicities is (M(E) , #(M(E)))-
measurable. Then the unordered n — tuple (z,, +-+,z,) is given by listing the distinct z/, ---, z/
with the appropriate multiplicities. Thus we obtain the following,

Lemma 1.3.1 The sub — o - algebras o ( Cou(EY) )-and (=) of B(E") coincide.
In particular, if f € C, (EN) yvthen f (zy -+ ,2y) is 0(=") ) - measurable.

Proof If X (="(z,,2y)) = (35 n,), - (21,, nk) and f € o(C,, (EN)) then
f(a,me,zy) =f (2], oz, oLz, 02]) (with z/ repe{ateqn iﬁmes foreachi = 1, --- k).

The E - valued random variables Z, , ---, Z, are exchangeable if the joint distributions of
Z,, > Zyand Z,, -+, Z_, are identical for any 7 Eﬂ/(N ). The probability law P on .B(E")
of the exchangeable random variables Z, , -+, Z, is uniquely determined by its restriction to the
sub - o — algebras o(C, . (E")). Let M e (EY) denote the family of exchangeable probability

sym

laws on E". Then Csym(EN) is M, . (E") - determining, that is, ifu,, u, e M, (E") and
wa(x)p.,(d'x) . fENf(x),,Lz(dx),er Co(E") , thenp, = p, . Moreoverif u & M, .,

(EN) » § € pCsym(‘EN) ’ and(ll" g> <@ H then#g(A) =<I‘L’ g1A>/<#‘! g> EM},ex(EN)'
Given a Polish space S let Dg= D([o0,%); S ) denocte the space of cadlag functions from
[0, ) toS furnished with the Skorohod topology (cf. Ch. 2, Sect. 6). Given 7 €,./(NY,let 7:

E"— E" be defined by (7x); = x forw = (%, ,%y) e E" and 7 :Dgv— Dy be defined by

(0),(8) = (0). *
An exchangeable system of N partlcles is defined by an exchangé&lﬁé probability laws P on
Dy ,or equivalently,

(i) an exchangeable initial distribution 7, p on E” ,and

(ii) a family {P:y e E"} of conditional distributions on Dy which satisfies P, = P,o7 lor

P, (mA) = P,(A) foreveryy € E', A € Dand w e./(N).

We next give a simple criterion which implies that an E" — valued Markov process is exchangeable.
Lemma 1.3.2 et Z = (Z,,,Zy) be an E” - valued cadlag Markov process with transi-

tion function p(s, x; t, dy). Then Z is an exchangeable system provided that the marginal distri-

6
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Chapter 1 From particle systems to measure-valued processes :

e B
EREeE

butions P (Z (t) € ), t € R, are exchangeable and p(s, x5 t, dy) =p(s, 7y; t,7B) for
every m € o/ (N),y € E', B ¢ BE"), or equivalently ,

(S,f (7 ))(7 'x) = (8,f)(%),fe C(E"). (L3 1)
Note that in the case of a time homogeneous Feller semigroup |S,| and with generator A and core
Dy(A) the above criterion is implied by _

(A (7 - (F'y) = (A (- ))(y), fe D,(A). (1.3.2)

Proof Letm E.,‘,_Z;“ ty, *st,e R, and 7 € »/(N). Then for B,e B(E),
Po(Z (%) e L] B, i=1,,m)

= f A“'I P(O .'Yo, t11 dyl)H: lp(tiy yi; ti+1’ dyul)
wBF Y wBEY .

= f . j p(0,7yg; &, ardy YIS p(e;, 7yi5 Ly s %dyi-ﬂ)»
"jB]r—lj ,,.,.B%—l]

= f I r(0,7y,;3 t]’dyl)nt—l PCt,%is ti »@Yinn)
.n.ig—r—lj '”JB% i

= Pa-yo(z () e H?:lBi‘s i=1,-,m),
since by assumption p(¢;,7y;; ti.q, @y, 1) = p(ti, ¥i5 iy dYie)-
Thus the finite-dimensional distributions of P, and P, o' coincide which yields the result.

Proposition 1.3.3 Lat Z = (Z,,---,Zy) be an E" — valued cadlag exchangeable Feller

process. Then the empirical measure process X (1) = =, (Z (1)) is a cadlag M, (E) —'valued
Feller Markov process.

Proof For each ¢ e C (E) ,'J.d)(x)X (t, dx) = N"lg',lcb(zi(t)) is cadlag and hence

X (t) € D([0, w); M,(E)) ,a.s.
Let #%=g|Z (5); 0 < s < t}. Then in order to prove the Markov process for X( - ) it
suffices to show that
P(X(t+s)e *la(X ) VF?) =P (X(t +s) € - la(X(2))), a.s.
It follows from the Markov property of Z and the inclusion %7 3 (X (t)), that the left hang
side equals P (X (¢t + s) € - 1o(Z (t))) a s. Hence it suffices to show that P (=,(Z
(t+s)) € ~lo(Z(t))) =P (=N Z (t +5)) € «lo(X (t))). Since (Z (t), Z
(¢t + s)) forms N (E x E) - valued exchangeable random variables by hypothesis, P (=, (Z
(t +35)) e Ylo(Z(2))) =P(Ex(FZ(t+s5)) € < la(FTZ(1))) = P(=W(Z 1+
- s)) e - Io‘(/quZ(t))) a.s. Thus P (=,(Z (t +s)) € + lo(Z (t))) is a symmetric func-
' tion of Z'(z) and by Lemma 1.3. 1 we conclude that there is a 0( =y (Z (¢))) - measurable
version of P (F,(Z (¢ + 5)) € * lo(Z (¢))), and this yields the Markov property. Finally,
41‘ note that the assumption that Z is cadlag and Feller implies that (=, is also cadlagi
Lq 1.4 Random probability measures moment measures and

3
i exchangeable sequences

J:!H:'

r,—.

Let X be a random probability measure on E, E Polish. Then the nth moment measure is a

7

i ‘g&«

o
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probability measure defined on E” as follows:
M, (ds, e ,dz,) = E(X (du,)-+-X (dg,)).

It is the probability law of n — exchangeable E - valued random variables, |Z,, ---,Z,}. Noting
that this is a consistent family and using Kolmogorov’ s extension theorem we can associate with
every random probability measure on E an exchangeable sequence of E - valued random variables,
{Z_ :n e N|. The converse result is related to de Finetti’ s theorem.

Lemma 1.4.1 (a) A random probability measure on E is uniquely determined by its
moment measures of all orders. !
(b) The sequence {X,} of random probability measure with moment measures {M,,. n, m € N}
converges weakly to a random probability measure X with moment measures {M, | if and only if
M, . =M_asn— o foreachm e N.

Proof This follows from Lemma 1.1.2(a) ,Corollary 2. 2. 6 and Lemma 2.2. 7.

1.5 Weak convergence and the martingale problem

In subsequent sections we will systematically develop’ the notions of weak convergence of
measure-valued processes and measure-valued martingale problem. In this section we briefly intro-
duce this approach by applying it to the Fieming-Viot process,;

In particular we will show that in addition to weak corzlgvgggencg‘ of finit dimensional distribu-
tions the laws of the measure-valued Maran processes X, their distributions P"XN are tight in the
space "of probability measures on D( [0, « }; M,(E)) and 6onsequently weak convergence of
processes follows. This implies that the Fleming-Viet process can be realized as a cadlig
process.

We will now show that the Fleming-Viot process can also be characterized as the unique
solution of the martingale problem for ( %, %, (.%) ).

Since {Xy(t)| is a Feller process with generator %y and core % (.%) , it follows that

My(6) = F (4(0) = [ B F (X,())ds, F & G(9),

_is a bounded martingale under 'P::'N .
~ Therefore fort € [0, T ],

%

FalXy(0) = [, (X())ds = Mu(0) + [RON, J) (X,())ds(1.5.1)
rIR(N, F, s)| < c¢(F)/N. |

“In order to prove the tightness of the szv onD=D([0, ); M,(E)) we will use Theorem 2. 6. 4
it suffices to show that for ¢ e Dy(A),(Xy(t), ¢b)are tight in D([0, % ); R ). Applying
(1.5.1) to F, () ={u, ¢) and F(u) = {(u, ¢>2, and then using Corollary 2. 6. 3 it follows
that the laws of < X,(t), ¢ > are tight in D([0,% ); R ). Since using the convergence of the

and sup,

finite dimensional distributions, this yields the weak convergence of probability measures PfN on
D.
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Now let F € Do(ﬂ). In this case the real — valued functional F (X (2)) - F (X (s)) —

£ BF (X (u))du is canonical process we get that
PLF (X () - F (X () - [BF (X (w)dw)H (X)]
= JmP[(F (X (1) =F (X () = [BF (X () dw)H (X)]
hmPN [(F(X (t))*ﬁeF (X (s)) - fﬁF (X (u))du) + J’R(N F,u)du)H (X )]
= Lim P! [ (M, (1) ~My(s) + [RON, F, u)du)H (X)]
= limPY [ ( [RON, F, w)du)H (X)] = 0
This implies that

M.(1) = F (X (1)) - F(X(s)) —[ﬂ(mu))du

is also a martingale for each F &€ (. %) under P,. Therefore {iP,t pe M, (E)} is a solution
to the martingale problem for (%, G, (F)). In fact the family {P,: pe M (E) | is unique-
ly characterized in this way since any solution to the martingale problem must have the same mo-

ment measures as the Fieming — Viot process. This can be verified by applying above. The details

of this argument will be given in greater generality below.

1.6 Branching particle systems

Let us for the moment continue in the same spirit and consider a simple branching particle
system on a compact metric space E. The main difference from the Moran model is that the total
number of particles is no longer constant in time. For this reason the basic state space is now
M (E) the space of finite Borel measures on E. We will again follow the elementary approach
based on moment measures to characterize the transition function for the limiting measure-valued
process.

We consider, a system of particles in the space E which move,die and produce offspring. We
begin by assumjég that during its lifetime each particle performs an A — moment independently of
the other/particle.

Tn the case of critical branching when particles die they produce & particles with probability p, ,
k=0,1,2, -, 3, kp, = 1. We will assume in this section that i

= 2 K p,,and 2 Ep,<o.
After branching the resulting set of particles evolve in the same way and independently of each
other starting off from the parent particle’ s branching site. Let N (t) denote the total number of
particles at time #. We denote their locations by {x,(t) : 1 < i < N (1) I
In order to obtain a measure-valued process by use of an appropriate scaling we assume that parti-
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cles have mass £ and branch at rate ¢/e.

For B € ¢ ,define
N

X, (1, B) = &( Zlg(x(t)))
Let C; denote the class of function on M (E) of the form F,(u) = f ({m, ¢)) with f €

Ci(R), de C(E). Let D (B ={F(pu) : F(p) =f(p, $));fe GG(R), ¢ e
D,(A)| where D,(A) isin Sect. 1.2. Then X,( - ) is an M (E) - valued Feller précess. The
generator of X, ( + ) is defined on & (.F), by '

B F (p) =C'Fp) + cszf{§pk[f((;b, ¢) +e(k-1)d(x)) -f ({u, d>) ] tu(dx)

where G* denote the generator of the empirical process associated to particles performing inde-
pendent A — motions in E. :
Then for F € D (B), B, F (u) =FF (u) + O0(¢)

where BF (u) = f ({u, ¢)){m, Ap) + %C(mz - 1) (K, ),y ¢2>

Letting £ — 0 we obtain a measure-valued process with generator defined on &7 (%) by

o F () = (St 6)) o A) +5clmy ~1)f (St 6)) Cair 67)

= [ A(8F () /3u(2) u(de) + o e(miic ) | ff(azF () /8u(x)8u(5))8,
(dy)u(dx))
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