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Preface

Dynamic Epistemic Logic is the logic of knowledge, actions and the interrelation of them.
This is not about one logic, but about a whole family of logics that allows us to specify static
and dynamic aspects of rational agent systems. The book provides various logics to support
such formal specifications.

Knowledge here is understood in a broad sense, that is, we see also doxastic logic as a
sort of epistemic logic.

Knowledge is defined as a set of propositions that an agent knows in the classical
dynamic epistemic logic. In other words, cognitive objects of the agent are propositions for
such logic. But, in my opinion, cognitive objects of an agent can also be actions, agents,
individuals and so on.

Hence, in this book, we will study such cognitive objects by logical methods.

In the book, except classical logical methods, we mostly use four methods: Semi-
infinitary Method, Bounded-valuation Method, Self-substitution Method and Fixed-point
Method. By Semi-infinitary Method we mean a method presented by de Lavalette, Kooi and
Verbrugge [2004], where they used such a method to prove strong completeness of PDL,,
But it seems to me that Bounded-valuation Method, Self-substitution Method and Fixed-point
Method are new ones.
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Chapter 1 Foundations

In this chapter, we will introduce epistemic logics, dynamic logic and dynamic epistemic logic
we need later.

In Section 1, we will introduce multi-agent epistemic logics, and see simple-agent
epistemic logics as the limited cases of the former.

In Section 2, we will introduce dynamic logic PDL which is a standard logic
characterizing actions.

In Section 3, we will introduce semi-infinitary dynamic logic PDL, and one
generalization of it.

In Section 4, we will introduce dynamic epistemic logic.

The logics above are foundations of logics we shall present.



§ 1 Epistemic Logic

In this section we will introduce multi-agent epistemic logics, and see imple-agent epistemic
logics as the limited cases of the former.

In this book we always use PV = {p,,..., p,,...} as a countable set of propositional
variables, and Agent as a finite set of (names for) agents.

Definition and Convention 1.1.1 A multi-agent epistemic language ELy, is a set of formulas
o, given by the following formation rules:
0 =p|—-0]|(@Avy)| K, where p € PV and 4 € Agent.
When Agent = {4}, we use Ko as Ky, EL as ELy, and call EL a simple-agent epistemic
language.
For every agent 4, Ko is interpreted as “agent 4 knows (that) ¢”.
Formulas (¢ v W), (¢ — W), (¢ <> y), T and L are defined as follows:
(@ VW) = =(=0 A=),
(@ = ) =—(p A =y),
(@) =0 > YA (Y —>09),

T = (p] Vv —|p]),
1= —:T,
kA(p = _"KA"'(P

For convenience, we usually abbreviate “if...then...”, “if and only if”, “not”, “for all”,
“there are/is” to =, <, ~, V and 3, respectively.

If not especially mentioned henceforth, in this book, we always use me{avariables p, q,
... (with or without subscripts) as formulas in PV, metavariables ¢, y, 8, ... (with or without
subscripts) as formulas of the languages defined above or below, and @, V¥, ... (with or
without the subscript) as formula sets, namely, subsets of such languages.

o is called a compound formula < ¢ € ELyy~ PV.

As usual, we will omit the outside parentheses of a formula and the inside parentheses
subject to the convention that each of the following symbols is more binding than the one in
its right:

-, Ky A, v, =,



In this book we always use ¢, —...—> ¢, as ¢; - (... @,)...), and Formy as the
following set:

{0 € ELy| ¢ is a formula generated by propositional variables, — and A such that ¢ is
not an instantiation of some tautology or its negation}. -

Remark. A formula in Form, can be called intuitively a factual proposition.

Definition and Abbreviation 1.1.2
(1) Let S be an axiomatic system® we shall present in this book. ¢ is a theorem of S,
denoted by +s @, if ¢ has a formal proof in S; that is, there are formulas @y, ..., @, such that
for every 1 <i < n, @; is an axiom of S or @, is obtained from some formula(s) in front of it by
arule of S.
We use Th(S) as the set of all theorems of S, and *s ¢ as ¢ ¢ Th(S). In the following
we shall omit the subscript S if not confusing.
(2) Let S be a system. We use S + A/R as the system obtained by adding Axiom A or
Rule Rto S, and S — A/R as the system obtained by deleting Axiom A or Rule R from S.
We use S, + 8, as the system formed by all the axioms and rules of S; and S,.
Let ¢ = y be an abbreviation. We write S+ ¢ ==y as S+ ¢ & y.
A system is called an abbreviative system <> it is of the form S + ¢ := y, otherwise it is
called a non-abbreviative system.
Such a method for generating systems by abbreviations are called Abbreviation Method.
(3) A multi-agent epistemic system EK is defined as follows:
(Taut) all instantiations of tautologies,
MP) o, 0o vy/y (modus ponens),
Kxa)  Ka(@ > y) > K0 > Kpy,
(RNk 1) ¢/ Kyo.
(4) A multi-agent epistemic system ET .= EK +
(Txa) Kuo—>o.
(5) A multi-agent epistemic system ESS = ET +
5k 4) —Kup > K4—K, 0 (Negative Introspection Axiom).
(6) Let S, and S, be two systems. S, and S, are equivalent, denoted by S; = S,, if
Th(S;) = Th(S,). -

Lemma 1.1.3
(1) The following are derived rules and theorems of EK:

® In the following an axiomatic system is called simply a system.



(Mo — v/ Ko~ Kay,
o= v/ ko> kay;
(2) K49 <> —k4—0;
3) Q1 A A O = 0 / K1 AL A K40, > Ki@ (denoted by RKx);
(@) k(@1 Avc A 9) = Ky A A KyPe
(1) The following is a theorem of ESS:
(4x) Kyo > K K0  (Positive Introspection Axiom). 4

In this book we always use £: X —> Y as “f'is a mapping (function) from Xinto 1.

Definition and Abbreviation 1.1.4

(1) A multi-agent epistemic frame for ELy is a tuple (W, Rx) such that W is a set of
states such that W # &, and Ry is a mapping such that Rg(4), abbreviated to Rk 4 below, is a
binary relation on W for each 4 € Agent.

(2) A multi-agent epistemic model for ELy is a tuple M = (W, R, V) such that

F=(W, R¢)

is an epistemic frame and V: PV — (W), where o (W) is the power set of W.

Here F is called the frame underlying M or the underlying frame of M or the frame of M,
M is called a model based on F or a model on F, and V is called a valuation on F.

(3) In this section we always use Frame as the class of all epistemic frames and Model
as the class of all epistemic models.

(4) We always use wRx 4u as (W, u) € Rk 4 and ~wRy qu as (w, u) € Ry 4.

(5) For each w € W, R 4(w) = {u € W|wRx qu}. 4

Remark. If not especially mentioned henceforth, in this book we always use
metavariables w, u, v, ... (with or without subscripts) as elements of W, and metavariables U,
V, ... (with or without subscripts) as subsets of .

Definition 1.1.5 (Truth Definition) Let M = (W, Rk, V) € Model. For every compound
formula @, the truth set V() of ¢ w.r.t. Mis defined inductively as follows: forallw € W,

(Hwe V(—v)=we Vo).
Qwe Npry)owe N@)andw € N(y).

B)w € V(K49) <> R 4w) < V(9).

Remark. As | see it, together a model definition and a truth definition of compound
formulas of a language can be called a semantics. because it can give a meaning (a
proposition) to every formula of the current language w.r.t. every model.



As usual, it is easy to prove the following lemma.

Lemma 1.1.6 Let (W, Rk, V) € Model. Then

(1) V(—0) = W - V(g).
(o ~ )= W) (y).
Vo v y) = (@) U ).
nLy=a, NT)=w.

(2) (@) N V(o > v) < ().

3) @ - )= W < W) < ).

@) V@ © y) = W V(9) = Ny).

Definition 1.1.7 (Validity Definition) Let F = (W, R) € Frame and M = (W, Rk, V) €
Model.

(1) @ is valid in M, denoted by M = ¢, < V(p) =W,
otherwise, @ is invalid in M, denoted by M ¥¢.
(2) @ is valid in F, denoted by F' = ¢, < V(o) = W for each valuation V on F;
otherwise, @ is invalid in F, denoted by F' ¥ o.
(3) Rule @, ,..., @, / W preserves validity w.rt. M &<
Hen=...=Ne)=W=>WNy) =W
(4) ¢ is satisfiable <> there is a model (W, R, V) € Model and w € W such that w € V().

Let S be a system which has been defined or will be defined.

Definition 1.1.8 (Soundness Definition and Completeness Definition) Let C be a model
class or a frame class.

(1) S is sound w.r.t. C <> every theorem of S is valid in all elements in C.
(2) S is complete w.r.t. C < every formula valid in all elements in C is a theorem of S.

_i

Definition 1.1.9 Let F = (W, Ry) € Frame. The following conditions are frame conditions on F:
(ref) Vw € W(wRx sw) (Reflexivity).
{euc) Vwuv € W(wRy su and wRy 4v = uRk 4v) (Euclideanness).

Let Frame(ref) be the class of all epistemic frames satisfying (ref) and Frame(ref, euc)
the class of all epistemic frames satisfying (ref) and (euc), respectively. 4

As usual, we get easily:



Theorem 1.1.10 (Frame Soundness Theorem)
(1) EK is sound w.r.t. Frame.
(2) ET is sound w.r.t. Frame(ref).
(3) ESS is sound w.r.t. Frame(ref, euc). -

In the following we will prove the frame completeness of the systems above. We first
give the following necessary definitions and lemmas to do it.

Let w be a finite formula set. We use Aw as a conjunction of all elements of w in some
fixed order.

Let aw =T ifw=, and Aw := ¢ if w = {@}.

Definition 1.1.11 Let w be a formula set.
(1) w is S-consistent <> for all finite subset u c w, ¥g —Au.
(2) w is maximal < for every ¢ € ELy, ¢ € wor =@ € w.
(3) w is maximal S-consistent < w is maximal and S-consistent.
(4) ¢ is S-consistent < {@} is S-consistent.
Sw +S @ <> there is a finite subset # € w such that g Au —> @. 4

Remark. In the following we will omit the parameter and subscript S if not confusing,
and abbreviate “maximal S-consistent set” to S-MCS and “maximal consistent set” to MCS.

_|

As usual, it is easy to prove the following two lemmas.

Lemma 1.1.12 Let w be an S-MCS. Then

(DHD—-pewsoew.
oAyewspewandy e w.
PVYEWSSQPEWOrY € w.
pewand FsP > Y=Y Ew.
pewandp >y ew= Yy e w.

Q) Th(S) cw.

Gwroogew.

Lemma 1.1.13 Let W be the set of all S-MCSs, and let | ¢ | :== {w € W| ¢ € w}. Then
M]-e|=W-|o] '
lory|=]lo[N]y]
lovyl=lolu]yl]
[Ll=@, |T|=Ww.
@elnle—>vlcivl
Glo-»v|=Wololclvieo soay.



BDiloeov|=Felol=lylie Fsoey.
(5)Lindenbaum Lemma) Let w be a S-consistent set. Then there is some u € W such
thatw c u.
(6) If ¥ @, thenthereisau € Wsuchthatp ¢ w.
(7)(Anti-chain Property) Let w, u € W. Then
wWCuSw=u

(8) s — ¢ < ¢ is not S-consistent.
(9) Let @ be a set of formulas. Then

O - DU {9} isnot S-consistent.
(10) Let @ < Th(S).

ks ~@ = ® U {@} is S-consistent.

Given any formula set w, let
Ksw={¢|Ks0 € w} and
ki w:={k |0 e w}.

Definition 1.1.14 (Canonical model for S) The canonical model for S is a tuple (W, Rx. V)
such that:
W= {w | w is maximal S-consistent},
Ry 4= {(w, u) € W | K, w c u} forall 4 € Agent,
V(p)=|p|forall p e PV.
We call (W, Ry) the canonical frame for S. +

Lemma 1.1.15 (Main lemma for the canonical frame) Let (W, Rx) be the canonical frame
for S. Then forallw € W,
MK ewes Vue WWRg qu= @ € u).
QOkifwcuesK ucwlforallue W.
3k e we 3ue W(wRk quand ¢ € u).
Proof- (1) “=>": Straightforward.
“<=": LetK 40 ¢ w. It suffices to show that
(#) there is some u € WsuchthatK, wcuand ¢ ¢ w.
Hypothesize that K, w U {—¢} were not consistent, then there are @, ..., ¢, € K; w such
that
E QL ALLAQ, > 0.
So, by RKy in Lemma 1.1.3,
= K01 A oA Ky, = Kyo.
Since ¢y, ..., 9, € K4 w, it follows that K40, ..., K40, € w, so K,0 € w by Lemma



1.1.12(1), contradicting that K,0 ¢ w. So K, w U {—o} is consistent, and thus (#) holds by
Lindenbaum Lemma.
(2) Straightforward.

By (1), we get (3) easily. -

Lemma 1.1.16 (Truth Lemma) Let (W, Ry, V) be the canonical model for S. For all w € W
and ¢ € EL,, we have

¢ ewe=we o).

Proof. Induction over ¢. The propositional variables dnd Boolean connectives — and A cases
are standard.

Let ¢ = K,qw. We have

Kiwewo Vue WWRu= v € u) by the previous lemma
< Vue W(WwRk u= ue V() by the induction hypothesis
S we MKay) by Truth Definition 1.1.5(3). -

As usual, we can prove:

Lemma 1.1.17 Let (W, Ry) be the canonical frame for S.
(1) If S = EK, then (W, Ry) € Frame. '
(2) If S=ET, then (W, Rx) € Frame(ref).
(3) If S = ESS, then (W, Ry) € Frame(ref, euc).

Theorem 1.1.18 (Frame Completeness Theorem)

(1) EK is complete w.r.t. Frame.

(2) ET is complete w.r.t. Frame(ref).

(3) ESS is complete w.r.t. Frame(ref, euc).
Proof. Take (3) for example. It suffices to show that

*gss @ = there is some F' € Frame(ref, euc) such that F ¥ .

Let (W, Rk, V) be the canonical model for ESS. Assume that #ggs . By Lemma 1.1.13(6).
there is a w € W such that ¢ ¢ w, sow & V(@) by Truth Lemma 1.1.16, so (W, R, V) = o,
and hence (W, Ry) * o.

By the previous lemma (3), (W, Ry) € Frame(ref, euc).

Definition 1.1.19 Let S and S, be two systems. S is a subsystem of S; or S, is an extension
system of 8, denoted by S = S, <> Th(S) < Th(S)).

The system consisting of Taut and MP is called the classical propositional calculus.
denoted by PC. In the following we will present a lot of axiomatic systems S such that S is an



extension system of PC. Since most of the above definitions and lemmas hold for such
systems S and the corresponding semantic concepts, in the following we mention them
simply at most.



§ 2 Dynamic Logic PDL

Dynamic Logic is a formal system for reasoning about actions. This branch of logic was
started by Pratt [1976]. The propositional part of dynamic logic (PDL) became an object of
study in itself. PDL was introduced by Fischer and Ladner [1979]. The standard reference is
Harel, Kozen and Tiuryn [2000].

We first give the definition of language expressing PDL.

Definition 1.2.1 In this book we always let AA be a countable set of atomic actions.

(1) A dynamic language DL~ consists of a set Action of actions a and a set Form of
formulas o, given by the following formation rules:

a=al(@uB)|(a;p)|a* wherea e AA, and
¢ :=p| =0 |0 Aw)|[a]o, where p € PV.

(2) A dynamic language DL consists of a set Action of actions a and a set Form of
formulas @, given by the following simultaneous induction (mutual induction):

a=al(auB)|(o;B)|a*|e?, where a € AA;
¢ =p|=¢|(pAvy)|[a]p, where p € PV.
(3) Let N be the set of all natural numbers and n € N. [o"]o is defined as follows:
[@’)e =0, ... " o = [alla]p.
4) <a>¢ = —[a]-e.

Remark. If not especially mentioned henceforth, in this book, we always use
metavariables a, b, ... (with or without subscripts) as actions in AA, and metavariables o., {3,
¥, ... (with or without subscripts) as actions in Action.

The intended interpretation of [a] is that it is necessary that after (some agent) doing a,
o is true.

Actions of the form a U B, a ; B, a* and ¢? are called compound actions. They have
the following intuitive meanings:

10



auP “Do o or B nondeterministically.”

a;f “Do a., then do B.”
a* “Do a any finite number of times, 0 or more, nondeterministically.”
0? “Test @; proceed if true, fail if false.”

Here U, ;, * and ? are called nondeterministic choice operator, sequential composition
operator, iferation operator and fest operator, respectively.

Definition 1.2.2

(1) (Blackburn, de Rijke and Venema [2001] (p. 203)) Regular Dynamic System PDL~

(expressed by DL") is defined as follows: for all a, B € Action and ¢, y € Form,
(Taut) all instantiations of tautologies,

Ko)  [a](9 = y) > [a]o > [a]w,

(Ax0) lavBle © {aje A [Ble (Choice Axiom),
(Ax) [o; Ble © [a][Ble (Composition Axiom),
(Axs) [o*]o < 0 Alalla*]e (Iteration Axiom),
(IAxs) @ A [a*)(¢ = [a]o) > [a*]e  (Induction Axiom),
(MP) o, 0>y /vy (modus ponens),

(RNo) ¢/ [a]o.
(2) (Harel, Kozen and Tiuryn [2000] (p. 22 and p. 240)) Regular Dynamic System PDL
(expressed by DL) :== PDL ™ +

(Ax)) [e?lv ooy (Test Axiom). -

Lemma 1.2.3
( 1) The following are derived rules and theorems of PDL and PDL.:
Mo->vy/[ae—>[aly, ¢->y/<a>p > <a>y.
2) [a)e © —<a>—0.
BG) O A A Q> 0/ [a]Q) A...A [0]o, = [0]e  (denoted by RK,,).
(4) =(<0>Q; AL A <O>Q,) > <A(Q] ALl A Op).
) [a*]e — [a"]¢ forall n € N.
(6) <o U B>p © <> v <B>@  (by AXL).
(7 <o ; B>0 © <o><P>¢  (by Ax).
8) o v <a><a*>@ © <a*>¢p  (by Ax).
(I1) The following is theorem of PDL:
<y>peoyae  (by Axo).
(Il1) In PDL without the induction axiom, the following axioms and rules are
interderivable:

11



