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Chapter 1

Solution of Nonlinear
Equations f(x) =0

Consider the physical problem that involves a spherical ball of radius r that is sub-
merged to a depth d in water(see Figure 1.1). Assume that the ball is constructed from
a variety of longleaf pine that has a density of p = 0.638 and that its radius measures
7 = 10 cm. How much of the ball will be submerged when it is placed in water?

.
T &

Figure 1.1 The portion of a sphere of radius r that is to be submerged to a depth d.

The mass M,, of water displaced when a sphere is submerged to a depth d is

M, = ./Od'lr(rz— (z =7 dz = m,

and the mass of the ball is M, = 4wnr3p/3. Applying Archimedes’ law, M, = M,,
produces the following equation that must be solved:

w(d® — 3d?r + 4r3p) _

3 0.

In our case (with » = 10 and p = 0.638) this equation becomes

m(2552 — 30d® +d3)
3
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The graph of the cubic polynomial y = 2552 — 30d? + d® is shown in Figure 1.2 and
from it one can see that the solution lies near the value d = 12.

y
y =2552—-30d% +d3
2000
1000
0 d
5 10 15 20
-1000

Figure 1.2 The cubic y = 2552 — 30d* + d°.

The goal of this chapter is to develop a variety of methods for finding numerical
approximations for the roots of an equation. For example, the bisection method could
be applied to obtain the three roots d; = —8.17607212, d» = 11.86150151, and d3 =
26.31457061. The first root d; is not a feasible solution for this problem, because d
cannot be negative. The third root ds is larger than the diameter of the sphere and it
is not the solution desired. The root dz = 11.86150151 lies in the interval [0, 20] and
is the proper solution. Its magnitude is reasonable because a little more than one-half
of the sphere must be submerged.

1.1 Iteration for Solving = = g(x)

A fundamental principle in computer science is iteration. As the name suggests, a
process is repeated until an answer is achieved. Iterative techniques are used to find
roots of equations, solutions of linear and nonlinear systems of equations, and solutions
of differential equations. In this section we study the process of iteration using repeated
substitution.

A rule or function g(z) for computing successive terms is needed, together with a
starting value py. Then a sequence of values {p;} is obtained using the iterative rule
Pri1 = g(pr)- The sequence has the pattern

Do (starting value)
p1 = g(po)

p2 = g(p1)

: (1.1)
pr = g(Pr-1)
Pre+1 = g(pr)
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What can we learn from an unending sequence of numbers? If the numbers tend
to a limit, we feel that something has been achieved. But what if the numbers diverge
or are periodic? The next example addresses this situation.

Example 1.1. The iterative rule po = 1 and pxy1 = 1.001px for k = 0,1,... produces
a divergent sequence. The first 100 terms look as follows:

p1=1.001py = (1.001)(1.000000) = 1.001000,
p2 =1.001p; = (1.001)(1.001000) = 1.002001,

ps = 1.001p; = (1.001)(1.002001) = 1.003003,

proo = 1.001pes = (1.001)(1.104012) = 1.105116.

The process can be continued indefinitely, and it is easily shown that lim, .. pn = +00. In
Chapter 6 we will see that the sequence {px} is a numerical solution to the differential equa-
tion 3’ = 0.001y. The solution is known to be y(z) = €’-°°**. Indeed, if we compare the 100th
term in the sequence with y(100), we see that pigo = 1.105116 ~ 1.105171 = €' = y(100).

In this section we are concerned with the types of functions g(z) that produce
convergent sequences {px}.
1.1.1 Finding Fixed Points
Definition 1.1. A fized point of a function g(z) is a real number P such that
P = g(P).

Geometrically, the fixed points of a function y = g(z) are the points of intersection

of y=g(z) and y = x.

Definition 1.2. The iteration p,4+1 = g{p,) for n = 0, 1, ... is called fized-point
iteration.

Theorem 1.1. Assume that g is a continuous function and that {p,}52, is a se-
quence generated by fixed-point iteration. If lim,_,., p, = P, then P is a fixed point

of g(z).

Proof. If lim,_ oo pn = P, then lim,,_,ooppy1 = P. It follows from this result, the
continuity of g, and the relation p,+1 = g (pn) that

g(P)=g ( lim pn) = lim g(p,) = lim p,41 = P. (1.2)
n—oo n—oo n—oc
Therefore, P is a fixed point of g(z).

Example 1.2. Consider the convergent iteration

po =05 and prs1 =€ F* for k=0,1,....
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The first 10 terms are obtained by the calculations

p1 = e~ 0309990 — 606531
p2 = e~ 0606531 — (y 545939
ps = e~ 0-545239 . 0. 579703

pg = e70:59840% — 567560
pio = e~ 2597560 — ( 566907

The sequence is converging, and further calculations reveal that

lim pn = 0.567143 .. ..
Thus we have found an approximation for the fixed point of the function y = e™~.

The following two theorems establish conditions for the existence of a fixed point and the
convergence of the fixed-point iteration process to a fixed point.

Theorem 1.2. Assume that g € C|a, 8].

If the range of the mapping y = g(z) satisfies y € [a, b] for all z € [a, b], (1.3)
then g has a fixed point in [a, b]. )
Furthermore, suppose that ¢’(x) is defined over (a,b) and that a positive
constant K < 1 exists with |¢'(z)] < K < 1 for all z € (a,b); then g hasa  (1.4)
unique fixed point P in [a, b].

Proof of (1.3). If g(a) = a or g(b) = b, the assertion is true. Otherwise, the values of
g(a) and g(b) must satisfy g(a) € (a,b] and g(b) € [a,b). The function f(x) =z — g(z)
has the property that

fla)=a—gla) <0 and f(b)=5b—g(b)>0.

Now apply the intermediate value theorem, to f(z), with the intermediate value 0, and
conclude that there exists a number P with P € (a,b) so that f(P) = 0. Therefore,
P = ¢g(P) and P is the desired fixed point of g(z).

Proof of (1.4). Now we must show that this solution is unique. By way of con-
tradiction, let us make the additional assumption that there exist two fixed points P,
and P,. Now apply the Lagrange mean value theorem, and conclude that there exists
a number d € {a,b) so that

g(P2) — Q(Pl).

! —
g(d)_ PQ_PI

(1.5)
Next, use the facts that g(P1) = P and g(P;) = P: to simplify the right side of
equation (1.5) and obtain

P— P

/
=271
g'(d) P, P
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But this contradicts the hypothesis in (1.4) that |¢’(z)] < 1 over (a,b), so it is not
possible for two fixed points to exist. Therefore, g(z) has a unique fixed point P in
la, b] under the conditions given in (1.4).

L ]

Example 1.8. Apply Theorem 1.2 to show rigorously that g(z} = cos(z) has a unique fixed
point in [0, 1].

Clearly, g € C[0,1]. Also, g(z) = cos(z) is a decreasing function on [0, 1]; thus its range on
[0,1] is [eos(1),1] € [0,1]. Thus condition (1.3) of Theorem 1.2 is satisfied and g has a fixed
point in [0,1]. Finally, if € (0, 1), then |¢’(z)| = | — sin(z)| = sin(z) < sin{1) < 0.8415 < 1.
Thus K = sin(1) < 1, condition (1.4) of Theorem 1.2 is satisfled, and g has a unique fixed
point in [0, 1].

We can now state a theorem that can be used to determine whether the fixed-point
iteration process given in (1.1) will produce a convergent or a divergent sequence.

Theorem 1.3 (Fixed-Point Theorem). Assume that (i) g,¢' € Cla,b], (ii)) K
is a positive constant, (iii) pp € (a,b), and (iv) g(z) € [a,b] for all x € [a, d].

If |¢’(z)] < K < 1 for all z € [a,]], then the iteration p, = g(p,—1) will con-
verge to the unique fixed point P € [a,b]. In this case, P is said to be an (1.6)
attractive fixed point.

If [¢’(x)| > 1 for all z € [a,b], then the iteration p, = g(prn—1) will not
converge to P. In this case, P is said to be a repelling fixed point and the  (1.7)
iteration exhibits local divergence.

Remark 1. Tt is assumed that po # P in statement (1.7).

Remark 2. Because g is continuous on an interval containing P, it is permissible to use
the simpler criterion |¢’(P)| < K < 1 and |¢’(P)| > 1 in (1.6) and (1.7), respectively.

Proof. We first show that the points {pn}32, all lie in (a,b). Starting with py, we
apply the Lagrange mean value theorem. There exists a value ¢p € (a,b) so that

[P —p1| =|g(P)— g(po)l = |g'(co)(P — po)| (1.8)
= |g'(co)llP — pol < K|P — po| < |P — pol. '

Therefore, p; is no further from P than pg was, and it follows that p; € (a,b) (see
Figure 1.3). In general, suppose that p,_1 € (a,b); then

|P —pn| = |9(P) = g(pr-1)| = |9'(cn—1}(P — pn-1)| (1.9)
= |g'(cn-1)||P ~ pn-1| < K|P —pn_1| < |P — pp_1]. '

Therefore, p,, € (a,b) and hence, by induction, all the points {p, }52, lie in (a,b).

|‘_ |P—p1|_’| |P_pol_’|
a P P y Po b
Figure 1.3 The relationship among P, po, p1, |P — pol, and [P — p1].
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To complete the proof of (1.6), we will show that
nango |P —pn| =0. (1.10)
First, a proof by induction will establish the inequality
|P — pn| < K"™|P — po. (1.11)

The case n = 1 follows from the details in relation (1.8). Using the induction hypothesis
[P — pn_1| < K" 1P — po| and the ideas in (1.9), we obtain

|P—pn| < K|P —ppa| < KK" YP —po| = K"|P — pol.

Thus, by induction, inequality (1.11) holds for all n. Since 0 < K < 1, the term K"
goes to zero as n goes to infinity. Hence

0< lim |P—pu| < lim K*|P —po| =0. (1.12)
n—0o0 n—o0

The limit of |P — p,| is squeezed between zero on the left and zero on the right, so we
can conclude that lim,_,. |P — pn| = 0. Thus lim,_. pn = P and, by Theorem 1.1,
the iteration p, = g(p,_1) converges to the fixed point P. Therefore, statement (1.6)
of Theorem 1.3 is proved. We leave statement (1.7) for the reader to investigate.

[
Corollary 1.1. Assume that g satisfies the hypothesis given in (1.6) of Theorem 1.3.
Bounds for the error involved when using p,, to approximate P are given by

[P —pu| < K"|P—po| foral n>1 (1.13)
and on
|P —pn| < —1lp_1—;{@ forall n>1. (1.14)

Proof of (1.14.) For all n > 1, using the Lagrange mean value theorem, we have

|Pnt1 — Pl = 19(Pn) — 9(Pn—1)| = 19’ (cn) (Pn — Pr—-1)|
< Klpp — pn-1| < -+ < K"[p1 — pol.
For any m > n,
|Pm = Pn| = |Pm — Pm—1 + Pm-1 — Pm—2 + = + Pny1 — Dnl
< |pm — Pm—1] + 1Pm—1 — Dm—2| + - - + |Pn+1 — Pn]
< K™ Ypy — pol + K™ 2|p1 — po| + - - - + K™ |p1 — pol
:Knlpl —po'(Km_n_l+Km_n_2+-‘-+K2+K+1)

1-K*»™ _ K"|pi — pol
K —pol G~ <=7 "%

Therefore,
K"|p1 — pol

_ - }i _ <
|P —pnl = lim |pm —po| < — 3
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1.1.2 Graphical Interpretation of Fixed-Point Iteration

Since we seek a fixed point P to g(x), it is necessary that the graph of the curve
y = g(z) and the line y = z intersect at the point (P, P). Two simple types of
convergent iteration, monotone and oscillating, are illustrated in Figure 1.4(a) and
(b), respectively.

¥
[
y=x
(Por8(pe)
120 21 ) AN, r’—
ol _
y=gk)
4
/]
L X
P py py Py

Figure 1.4 (a) Monotone convergence when 0 < ¢’ (P) < 1.

y
.y o=
y:g(x) yex
— | @ 2o
=" @y Py
Pl
T~
1 \ - x
Dy Py P py

Figure 1.4 (b) Oscillating convergence when —1 < ¢'(P) < 0.

To visualize the process, start at py on the z-axis and move vertically to the point
(po, 1) = (Po,9(po)) on the curve y = g(z). Then move horizontally from (pg,p1) to
the point (p;,p)) on the line y = z. Finally, move vertically downward to p; on the
z-axis. The recursion pni1 = g(p») is used to construct the point (pn,pni1) on the
graph, then a horizontal motion locates (Pn+1,Pn+1) on the line y = z, and then a
vertical movement ends up at p,41 on the z-axis. The situation is shown in Figure 1.4.
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If |g’(P)| > 1, then the iteration pni1 = g(pn) produces a sequence that diverges
away from P. The two simple types of divergent iteration, monotone and oscillating,
are illustrated in Figure 1.5(a) and (b), respectively.
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Figure 1.5 (a) Monotone divergence when 1 < g (P).
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Figure 1.5 (b) Divergent oscillation when g (P) < —1.

Example 1.4. Consider the iteration pnt1 = g(p») when the function g(z) =1+ — z%/4
is used. The fixed points can be found by solving the equation z = g(z). The two solutions
(fixed points of g) are z = —2 and = = 2. The derivative of the function is ¢'(z) = 1 — /2,
and there are only two cases to consider.



