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Preface

The publication in 1979 of Bradiey Efron’s first article on bootstrap methods was a
major event in Statistics, at once synthesizing some of the earlier resampling ideas
and establishing a new framework for simulation-based statistical analysis. The idea
of replacing complicated and often inaccurate approximations to biases, variances,
and other measures of uncertainty by computer simulations caught the imagination
of both theoretical researchers and users of statistical methods. Theoreticians
sharpened their pencils and set about establishing mathematical conditions under
which the idea could work. Once they had overcome their initial skepticism, applied
workers sat down at their terminals and began to amass empirical evidence that
the bootstrap often did work better than traditional methods. The early trickle of
papers quickly became a. torrent, with new additions to the literature appearing
every month, and it was hard to see when would be a good moment to try to chart
the waters. Then the organizers of COMPSTAT ’92 invited us to present a course
on the topic, and shortly afterwards we began to write this book.

We decided to try to write a balanced account of resampling methods, to include
basic aspects of the theory which underpinned the methods, and to show as many
applications as we could in order to illustrate the full potential of the methods —
warts and all. We quickly realized that in order for us and others to understand
and use the bootstrap, we would need suitable software, and producing it led us
further towards a practically oriented treatment. Our view was cemented by two
further developments: the appearance of two excellent books, one by Peter Hall
on the asymptotic theory and the other on basic methods by Bradley Efron and
Robert Tibshirani; and the chance to give further courses that included practicals.
Qur experience has been that hands-on computing is essential in coming to grips
with resampling ideas, so we have included practicals in this book, as well as more
theoretical problems.

As the book expanded, we realized that a fully comprebensive treatment was
beyond us, and that certain topics could be given only a cursory treatment because
too little is known about them. So it is that the reader will find only brief accounts
of bootstrap methods for hierarchical data, missing data problems, model selection,
robust estimation, nonparametric regression, and complex data. But we do try to
point the more ambitious reader in the right direction.

No project of this size is produced in a vacuum. The majority of work on
the book was completed while we were at the University of Oxford. and we are
very grateful to colleagues and students there, who have helped shape our work
in various ways. The experience of trying to teach these methods in Oxford and
elsewhere — at the Université de Toulouse I, Université de Neuch2tel, Universita
degli Studi di Padova, Queensland University of Technology, Universidade de
Sdo Paulo, and University of Umed -— has been vital, and we are grateful to
participants in these courses for prompting us to think more deeply about the

ix
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material. Readers will be grateful to these people also, for unwittingly debugging
some of the problems and practicals. We are also grateful to the organizers of
COMPSTAT '92 and CLAPEM YV for inviting us to give short courses on our
work.

While writing this book we have asked many people for access to data, copies
of their programs, papers or reprints; some have then been rewarded by our
bombarding them with questions, to which the answers have invariably been
courteous and informative. We cannot name all those who have helped in this
way, but D. R. Brillinger, P. Hall, M. P. Jones, B. D. Ripley, H. O'R. Sternberg and
G. A. Young have been especially generous. S. Hutchinson and B. D. Ripley have
helped considerably with computing matters.

We are grateful to the mostly anonymous reviewers who commented on an early
draft of the book, and to R. Gatto and G. A. Young, who later read various parts
in detail. At Cambridge University Press, A. Woollatt and D. Tranah have helped
greatly in producing the final version, and their patience has been commendable.

We are particularly indebted to two people. V. Ventura read large portions of the
book, and helped with various aspects of the computation. A. J. Canty has turned
our version of the bootstrap library functions into reliable working code, checked
the book for mistakes, and has made numerous suggestions that have improved it
enormously. Both of them have contributed greatly — though of course we take
responsibility for any errors that remain in the book. We hope that readers will
tell us about them, and we will do our best to correct any future versions of the
book; see its WWW page, at URL

http://statwww.epfl.ch/davison/BMA/

The book could not have been completed without grants from the UK Engineer-
ing and Physical Sciences Research Council, which in addition to providing funding
for equipment and research assistantships, supported the work of A. C. Davison
through the award of an Advanced Research Fellowship. We also acknowledge
support from the US National Science Foundation.

We must also mention the Friday evening sustenance provided at the Eagle and
Child, thc Lamb and Flag, and the Royal Oak. The projects of many authors have
flourished in these amiable establishments.

Finally, we thank our families, friends and colleagues for their patience while
this project absorbed our time and energy. Particular thanks are due to Claire
Cullen Davison for keeping the Davison family going during the writing of this
book.

A. C. Davison and D. V. Hinkley
Lausanne and Santa Barbara
May 1997
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Introduction

The explicit recognition of uncertainty is central to the statistical sciences. No-
tions such as prior information, probability models, likelihood, standard errors
and confidence limits are all intended to formalize uncertainty and thereby
make allowance for it. In simple situations, the uncertainty of an estimate may
be gauged by analytical calculation based on an assumed probability model
for the available data. But in more complicated problems this approach can be
tedious and difficult, and its results are potentiaily misleading if inappropriate
- assumptions or simplifications have been made.

For illustration, consider Table 1.1, which is taken from a larger tabulation
(Table 7.4) of the numbers of AIDS reports in England and Wales from
mid-1983 to the end of 1992. Reports are cross-classified by diagnosis period
and length of reporting delay, in three-month intervals. A blank in the table
corresponds to an unknown (as yet unreported) entry. The problem was to
predict the states of the epidemic in 1991 and 1992, which depend heavily on
the values missing at the bottom right of the table.

The data support the assumption that the reporting delay does not depend
on the diagnosis period. In this case a simple model is that the number of

~ reports in row j and column k of the table has a Poisson distribution with mean
pjk = exp(a; + Bi). If all the cells of the table are regarded as independent,
then the total number of unreported diagnoses in period j has a Poisson
distribution with mean

> np =exple;) Y expl(Bi),
k k

where the sum is over columns with blanks in row j. The eventual total of as
yet unreported diagnoses from period j can be estimated by replacing a; and
Br by estimates derived from the incomplete table, and thence we obtain the
predicted total for period j. Such predictions are shown by the solid line in
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Diagnosis Reporting delay interval (quarters): Total
period Teports

to end

Year Quarter 0f 1 2 3 4 5 6 -+ 214 of1992
1988 1 31 80 16 9 3 2 8 6 174
2 26 99 27 9 3 11 3 3 211

3 31 95 35 13 18 4 6 3 224

4 36 77 20 2 11 3 8 2 205

1989 1 32 92 312 10 12 19 12 2 224
2 15 9 14 27 2 21 12 1 219

3 34 104 29 31 18 8 6 253

4 33 101 34 18 9 15 6 233

1990 1 31 124 47 24 11 15 8 281
2 32 132 36 10 9 7 6 245

3 49 107 S1 17 15 8 9 260

4 4 153 41 16 11 6 5 285

1991 1 41 137 29 33 7 11 6 271
2 56 124 39 14 12 7 10 263

3 53 175 3% 17 13 11 306

4 63 135 24 23 12 258

1992 1 71 161 48 25 310
2 95 178 39 318

3 76 181 273

4 67 133

Figure 1.1, together with the observed total reports to the end of 1992. How
good are these predictions?

It would be tedious but possible to put pen to paper and estimate the
prediction uncertainty through calculations based on the Poisson model. But
in fact the data are much more variable than that model would suggest, and

by failing to take this into account we would believe that the predictions are .

more accurate than they really are. Furthermore, a better approach would be
to use a semiparametric model to smooth out the evident variability of the
increase in diagnoses from quarter to quarter; the corresponding prediction is

the dotted line in Figure 1.1. Analytical calculations for this model would be

very unpleasant, and a more flexible line of attack is needed. While more than
one approach is possible, the one that we shall develop based on computer
simulation is both flexible and straightforward.

Purpose of the Book

Our central goal is to describe how the computer can be harnessed to obtain
reliable standard errors, confidence intervals, and other measures of uncertainty
for a wide range of problems. The key idea is to resample from the original
data — either directly or via a fitted model — to create replicate datasets, from

Table 1.1 Numbers of
AIDS reports in
England and Wales to
the end of 1992

(De Angelis and Gilks,
1994) extracted from
Table 7.4. A t indicates
a reporting delay less
than one month.



Figure 1.1 Predicted
quarterly diagnoses
from a parametric
model (solid) and a
semiparametric model®
(dots) fitted to the
AIDS data, together
with the actual totals to
the end of 1992 (+).
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which the variability of the quantities of interest can be assessed without long-
winded and error-prone analytical calculation. Because this approach involves
repeating the original data analysis procedure with many replicate sets of data,
these are sometimes called computer-intensive methods. Another name for them
is bootstrap methods, because to use the data to generate more data seems
analogous to a trick used by the fictiona] Baron Munchausen, who when he
found himself at the bottom of a lake got out by pulling himself up by his
bootstraps. In the simplest nonparametric problems we do literally sample
from the data, and a.common initial reaction is that this is a fraud. In fact
it is not. It turns out that a wide range of statistical problems can be tackled
this way, liberating the investigator from the need to oversimplify compléx
problems. The approach can also be applied in simple problems, to check the
adequacy of standard measures of uncertainty, to relax assumptions, and to
give quick approximate solutions. An example of this is random sampling to
estimate the permutation distribution of a nonparametric test statistic.

It is of course true that in many applications we can be fairly confident in
a particular parametric model and the standard analysis based on that model. '
Even so, it can still be helpful to see what can be inferred without particular
parametric model assumptions. This is in the spirit of robustness of validity of
the statistical analysis performed. Nonparametric bootstrap analysis allows us
to do this.
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3 5 7 18 43 8 91 98 100 130 230 487

Despite its scope and usefulness, resampling must be carefully applied.
Unless certain basic ideas are understood, it is all too easy to produce a
solution to the wrong problem, or a bad solution to the right one. Bootstrap
methods are intended to help avoid tedious calculations based on questionable
assumptions, and this they do. But they cannot replace clear critical thought
about the problem, appropriate design of the investigation and data analysis,
and incisive presentation of conclusions.

In this book we describe how resampling methods can be used, and evaluate
their performance, in a wide range of contexts. Our focus is on the methods
and their practical application rather than on the underlying theory, accounts
of which are available elsewhere. This book is intended to be useful to the
many investigators who want to know how and when the methods can safely
be applied, and how to tell when things have gone wrong. The mathematical
level of the book reflects this: we have aimed for a clear account of the key
ideas without an overload of technical detail.

Examples

Bootstrap methods can be applied both when there is a well-defined probability
model for data and when there is not. In our initial development of the
methods we shall make frequent use of two simple examples, one of each type,
to illustrate the main points.

Example 1.1 (Air-conditioning data) Table 1.2 gives n = 12 times between
failures of air-conditioning equipment, for which we wish to estimate the
underlying mean or its reciprocal, the failure rate. A simple model for this
problem is that the times are sampled from an exponential distribution.

The dotted line in the left panel of Figure 1.2 is the cumulative distribution
function (CDF)

_[o y <0,
Fuly) = { 1 —exp(~y/pn), y>0,

for the fitted exponential distribution with mean u set equal to the sample
average, y = 108.083. The solid line on the same plot is the nonparametric
equivalent, the empirical distribution function (EDF) for the data, which places
equal probabilities n~! = 0.083 at each sample value. Comparison of the two
curves suggests that the exponential model fits reasonably well. An alternative
view of this is shown in the right panel of the figure, which is an exponential

Table 1.2 Service hours
between failures of the
air-conditioning
equipment in a Boeing
720 jet aircraft
(Proschan, 1963).



Figure 1.2 Summary
displays for the
air-conditioning data.
The left pancl shows the
EDF for the data, £
(solid), and the CDF of
a fitted exponential
distribution (dots). The
right panel shows a plot
of the ordered failure
times against
exponential quantiles,
with the fitted
exponential model

shown as the dotted line.
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Although these plots suggest reasonable agreement with the exponential
model, the sample is rather too small to have much confidence in this. In the
data source the more general gamma model with mean u and index x is used;
its density is

p=1

fuxy) = % (E) ylexpl—xy/p),  y>0, mr>0. (L1)
For our sample the estimated index is & = 0.71, which does not differ signif-
icantly (P = 0.29) from the value x = 1 that corresponds to the exponential
model. Our reason for mentioning this will become apparent in Chapter 2.
Basic properties of the estimator T = Y for u are easy to obtain theoretically
under the exponential model. For example, it is easy to show that T is unbiased
and has variance u?/n. Approximate confidence intervals for u can be calculated
using these properties in conjunction with a normal approximation for the
distribution of T, although this does not work very well: we can tell this
because Y /u has an exact gamma distribution, which leads to exact confidence
limits. Things are more complicated under the more general gamma model,
because the index « is only estimated, and so in a traditional approach we would
use approximations — such as a normal approximation for the distribution
of T, or a chi-squared approximation for the log likelihood ratio statistic.
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The parametric simulation methods of Section 2.2 can be used alongside these
approximations, to diagnose problems with them, or to replace them entirely.
]

Exampie 1.2 (City population data) Table 1.3 reports n = 49 data pairs, each
corresponding to a city in the United States of America, the pair being the 1920
and 1930 populations of the city, which we denote by u and x. The data are
plotted in Figure 1.3. Interest here is in the ratio of means, because this would
enable us to estimate the total population of the USA in 1930 from the 1920
figure. If the cities form a random sample with (U, X) denoting the pair of
population values for a randomly selected city, then the total 1930 population
is the product of the total 1920 population and the ratio of expectations
6 = E(X)/E(U). This ratio is the parameter of interest.

In this case there is no obvious parametric model for the joint distribution
of (U, X), so it is natural to estimate § by its empirical analog, T == X /U, the
ratio of sample averages. We are then concerned with the uncertainty in T. If
we had a plausible parametric model — for example, that the pair (U, X) has
a bivariate lognormal distribution — then theoretical calculations like those
in Example 1.1 would lead to bias and variance estimates for use in a normal
approximation, which in turn would provide approximate confidence intervals
for 6. Without such a model we must use nonparametric analysis. It is still
possible to estimate the bias and variance of T, as we shall see, and this makes
normal approximation still feasible, as well as more complex approaches to
setting confidence intervals. -

Example 1.1 is special in that an exact distribution is available for the
statistic of interest and can be used to calculate confidence limits, at least
under the exponential model. But for parametric models in general this will
not be true. In Section 2.2 we shall show how to use parametric simulation to
obtain approximate distributions, either by approximating moments for use in
normal approximations, or — when these are inaccurate — directly.

In Example 1.2 we make no assumptions about the form of the data
disribution. But still, as we shall show in Section 2.3, simulation can be used to
obtain properties of T, even to approximate its distribution. Much of Chapter 2
is devoted to this.

Layout of the Book

Chapter 2 describes the properties of resampling methods for use with sin--
gle samples from parametric and nonparametric models, discusses practical
matters such as the numbers of replicate datasets required, and outlines delta
methods for variance approximation based on different forms of jackknife. It
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Table 1.3 Populations
in thousands of n = 49
large US cities in 1920
(4) and in 1930 (x)
(Cochran, 1977, p. 152).

Figure 1.3 Populations
of 49 large United
States cities (in 1000s)
in 1920 and 1930.

1930 population

200

u X u X u x
138 143 7% 80 67 67
93 104 381 464 - 120 115
61 69 387 459 172 183
179 260 78 106 66 86
48 75 60 57 46 65
37 63 507 634 121 113
29 50 50 64 4 58
23 48 7 8 64 63
30 1 64 77 56 142

2 50 40 60 40 64
338 52 136 139 116 130
46 53 243 291 87 105
n o7 256 288 43 61
25 57 94 85 43 50
298 317 36 46 161 232
74 93 45 53 36 54
50 58
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also contains a basic discussion of confidence intervals and of the ideas that
underlie bootstrap methods.

Chapter 3 outlines how the basic ideas are extended to several samples,
semiparametric and smooth models, simple cases where data have hierarchical
structure or are sampled from a finite population, and to situations where data
are incomplete because censored or missing. It goes on to discuss how the
simulation output itself may be used to detect problems — so-called bootstrap
diagnostics — and how it may be useful to bootstrap the bootstrap.

In Chapter 4 we review the basic principles of significance testing, and then
describe Monte Carlo tests, including those using Markov Chain simulation,
and parametric bootstrap tests. This is followed by discussion of nonparametric
permutation tests, and the more general methods of semi- and nonparametric
bootstrap tests. A double bootstrap method is detailed for improved approxi-
mation of P-values.

Confidence intervals are the subject of Chapter 5. After outlining basic
ideas, we describe how to construct simple confidence intervals based on
simulations, and then go on to more complex methods, such as the studentized
bootstrap, percentile methods, the double bootstrap and test inversion. The
main methods are compared empirically in Section 5.7, then there are brief
accounts of confidence regions for multivariate parameters, and of prediction
intervals.

The three subsequent chapters deal with more complex problems. Chap-
ter 6 describes how the basic resampling methods may be applied in linear
regression problems, including tests for coefficients, prediction analysis, and
variable selection. Chapter 7 deals with more complex regression situations:
generalized linear models, other nonlinear models, semi- and nonparametric
regression, survival analysis, and classification error. Chapter 8 details methods
appropriate for time series, spatial data, and point processes.

Chapter 9 describes how variance reduction techniques such as balanced
simulation, control variates, and importance sampling can be adapted to
yield improved simulations, with the aim of reducing the amount of simulation
needed for an answer of given accuracy. It also shows how saddiepoint methods
can sometimes be used to avoid simulation entirely.

Chapter 10 describes various semiparametric versions of the likelihood
function, the ideas underlying which are closely related to resampling methods.
It also briefly outlines a Bayesian version of the bootstrap.

Chapters 2-10 contain problems intended to reinforce the reader’s under-
standing of both methods and theory, and in some cases problems develop
topics that could not be included in the text. Some of these demand a knowl-
edge of moments and cumulants, basic facts about which are sketched in the
Appendix. )

The book also contains practicals that apply resampling routines written in



