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Preface

This book is intended to provide a general introduction to the physics of quantized
fields and many-body physics. It is based on a two-semester sequence of courses
taught at the University of Illinois at Urbana-Champaign at various times between
1985 and 1997. The students taking all or part of the sequence had interests ranging
from particle and nuclear theory through quantum optics to condensed matter
physics experiment.

The book does not cover as much ground as some texts. This is because I have
tried to concentrate on the basic conceptual issues that many students find difficult.
For a computation-method oriented course an instructor would probably wish to
suplement this book with a more comprehensive and specialized text such as Peskin
and Schroeder An Introduction to Quantum Field Theory, which is intended for
particle theorists, or perhaps the venerable Quantum Theory of Many-Particle
Systems by Fetter and Walecka.

The most natural distribution of the material if the book is used for a two-semster
course is as follows:

1st Semester: Chapters 1-11.

2nd semester: Chapters 12-18.

The material in the first 11 chapters is covered using traditional quantum me-
chanics operator language. This is because the text is intended for people with a
wide range of interests. Were I writing for particle-theory students only, I would
start with path integrals from chapter one. For a broader readership, it seems useful
to maintain continuity with traditional hamiltonian quantum mechanics for as long
as one as there is no penalty in ease of comprehension — and this is the case with
the simple field theories discussed in the earlier chapters.



Preface vii

In the second half of the book the path integral comes into its own. It is seen
as an efficient generator Feynman rules and Ward identities, and is, of course, in-
dispensible for understanding the connection between renormalization and critical
phenomena, as well as non-perturbative phemomena such as tunneling.

Although the book is not intended primarily for students of condensed matter
physics, many of the examples discussed in the text are drawn from that field.
This choice partly reflects my own interests, which have, over the years, wan-
dered from high energy physics through lattice gauge theories to systems with real
crystal lattices. There is, however, another reason: condensed matter systems can
been seen and felt. I believe that it is far easier to acquire a visceral understand-
ing of spontaneous symmetry breaking in a superfluid, than it is to grasp chiral
symmetry breaking in QCD. Furthermore, condensed matter systems have mathe-
matically well-defined hamiltonians and any field theory method applied to them
has to reproduce the measured properties. This is usually not the case in relativistic
systems, where additional principles have to be applied in order to decide which
of several regularization-dependendent answers is correct. While there is nothing
wrong with this, it is frequently disturbing to the beginner. Also it was only when
Ken Wilson used field theory to address the concrete condensed matter problem
of critical phenomena that the origin of the perturbation theory divergences was
understood.

Michael Stone
Urbana, Illinois
October, 1999
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1

Discrete Systems

1.1 One-Dimensional Harmonic Crystal

We begin with the quantum mechanics of a vibrating crystal. To the naked eye
the crystal appears to be a continuous elastic solid. We know, however, that, when
viewed through a sufficiently powerful microscope it will be revealed to be com-
posed of individual atoms held together by chemical bonds. For our purpose the
atoms and bonds can be thought of as “balls and springs,” and the crystal as an as-
sembly of coupled harmonic oscillators. If you understand the quantum mechanics
of harmonic oscillators, it will not be difficult to apply this understanding to study
the effectively continuous crystal. This is our task in this chapter.

1.1.1 Normal Modes

To avoid the complexities of real crystals with their plethora of elastic constants
and modes, we will consider a simple one-dimensional model of a crystal.

- | . -
Mn-1 n Mn+1

Fig 1. A one-dimensional crystal.



2 1. Discrete Systems

We will take a line of atoms of unit mass whose equilibrium positions are at a
set of sites on the x axis labeled by the integer n, and separated by a distance a. We
will assume the atoms are free to vibrate only in the x direction, so we are dealing
with longitudinal waves, and denote the displacement of the atom at site n by 7,,.

The quickest route to the dynamics uses the lagrangian. As always in mechanics
this is the difference of the kinetic energy T and the potential energy V. For a
harmonic crystal V is a sum of terms of the form %A(n.. — Nn41)?, where A is the
spring constant, Thus

L=T—V=;[%ﬁi—%(nn—n,m)z}. a.n
From Lagrange's equations, one for each n,,
d (aL aL
7(5) o =0 42
we find the classical equations of motion
fin = M1 + a1 — 27,). (1.3)
These have solutions in the form of complex traveling waves
Ty = eikn—ion (1.4)
where
w? = 2A(1 — cosk). (1.5)

In the long-wavelength limit k¢ « 1, this dispersion relation reduces to
w® = AKk?, (1.6)

which means that the long-wavelength sound waves have velocity +/A.

In the next chapter we will have cause to consider an additional term in the
lagrangian, which corresponds to a harmonic potential Q%2 pinning each of the
particles to the vicinity of its initial location. Including this, L becomes

1, A 1
L=Z[in,z.—i(nn—n“n)z—iﬂzn,f]- (1.7)

The dispersion relation is now
w? > 20(1 — 1cosk) + Q% =~ Ak? + Q2. (1.8)

The additional potential therefore creates a gap in the spectrum, so there are no
solutions corresponding to any frequency below 2.

To determine the normal modes we must impose boundary conditions. Suppose
we take periodic boundary conditions by identifying atom n + N with atom n.
This means that 7, must equal n,,x. Consequently, we require ¢’*V to be unity
and the allowed values of k are therefore

ky=—, m=0,1,...,N—-1. (1.9)



1.1 One-Dimensional Harmonic Crystal 3

We can now write a normal-mode expansion

N=1
na(t) = Z [Amettmn=iont 4 A% g=thmntionr] (1.10)
=0

Because the total displacement is a real number, we have added to each original
complex exponential solution its complex conjugate.

From (1.1) we read off the momentum canonically conjugate to the dispacement
Nn

= fa. (1.11)

In quantum mechanics the displacement 7, and its canonical conjugate x,, become
operators #, and 77, with commutation relations

[ﬁn, ﬁm] = iRbpm. a (1.12)
From (1.10) we find that
N—I » 2 . s
Ha(t) = Aa(t) = Z [—iwmApe™ ™"+ iy A e tient} o (1,13)
m=0

We have a choice as to how to include time evolution in the quantum mechan-
ics formalism. In the Schrédinger' picture we put the time dependence in the
Hilbert-space states and leave the operators time independent. This is the custom-
ary approach in elementary quantum mechanics courses, and is what we usually
have in mind when we write equations like (1.12). In field theory it tumns out to be
more convenient to use the Heisenberg? picture where the operators are explicitly
time dependent. For any operator O we have

O(t) = st H(0)e~1 1, (1.14)
and
do
= = -[H o). (1.15)

When we use the Heisenberg picture, we must specify the times at which the
fields in the commutation relation are to be evaluated. To retain its simple form
(1.12) must be replaced by an equal-time commutator

(Ain(t), m(t)] = #idpm. (1.16)

Finding the commutator with the operators evaluatcd at two different times requires
solving the dynamics of the system.

'Erwin Schrodinger. Born August 12, 1887, Vienna. Died January 4, 1961, Vienna,
Nobel Prize for Physics 1933.

Werner Karl Heisenberg. Born December S, 1901. Died February 1, 1976, Munich.
Nobel Prize for Physics 1932.



4 1. Discrete Systems

1.1.2  Harmonic Oscillator

Let us recall how the Heisenberg picture works for the harmonic oscillator.
For a unit mass oscillator with angular frequency w, the hamiltonian is

1. -
= §(p2+wzx2). (1.17)
Here the operators £(¢) and j(r) obey the equal-time commutation relation
[X@), p(0)] = in. (1.18)
The equations of motion are
ax(t) i _a . R
=-[{H,i]1= s 1.19
at h'[ x]= p@) (1.19)
dp [~
%ﬁl - i[y, Pl = —wi(0). (1.20)

Differentiating the first equation with repect to ¢, and substituting for from
the second shows that
d’x R
d—§+w2x =0. (1.21
The Heisenberg operator X(r) therefore satisfies exactly the same equation of
motion as the classical variable x(¢) it replaces.
We could write down the solution to (1.21) in terms of sines and cosines, but it
is more productive to introduce the operators (¢) and a*(¢) by writing

() = ‘/—hza(a(') +a'() (1.22)
n [ A n . at
p(t) = ﬂ(—iwa(t) + iwa'(t)). (1.23)

Equivalently,

a'() = \/:( 0 —i ”(')) (1.25)
o

Their equal-time commutation relations are found from those of %, p, to be

a@, atm) = 1. (1.26)

p(’)) , (1.24)

We also see that

A =ho@'©ae) + %). (1.27)
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So
da(t)

- = ;[H a()) = —iwalt) = a() = a(0)e ", (1.28)

da* (1)
de

From now on we will write d for a(0), and similarly for a*(0). In field theory
these are called the annihilation and creation operators, respectively.
The time dependénce of £(¢) and p(r) is now explicit:

2= ‘/ —;‘-l)-(ae—"“" +a'etien), (1.30)

p@) = ‘/ :—w(—iw&e"“" + iwad’ et ), (1.31)

If we substitute these expressions into the hamiltonian, we find that it is time
independent

= i[b? ,a' ()] = +iwa' () = a'@) = at )t (1.29)

H =hw@a'a + %), (1.32)

just as it is in classical mechanics.

1.1.3 Annihilation and Creation Operators for Normal Modes

Inspired by the harmonic oscillator, let us try setting

fin(t) = Z 2w J_{a e kmniomt Gt g=ikmntiwnt }, (1.33)
"

ﬂ,,(t) Z: 2wm J__ [—-lw,,.& ezk,..n—-tw.,( + 'wmaf —ll(,.'l-f—i(d,,!} s (1.34)

where [Gn, )] = Sma, and computing the equal-time commutator, [, (1), Am(t)],

to see if it comes out right. We have some hope that this will work since the ﬁﬁ ’s
are suggested by the harmonic-oscillator case, and the 7‘ﬁ ’s serve to normalize
the normal modes.

In dealing with these sorts of sums it is useful to remember the finite Fourier
series identity

-1
3 et = N3, (1.35)
m=0

which is easily proved from the formula for the sum of a geometric progression.



