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Preface

The first eight years of the twenty-first century has witted the explosion of data
collection, with relatively low costs. Data with curves, images and movies are fre-
quently collected in molecular biology, health science, engineering, geology, clima-
tology, economics, finance, and humanities. For example, in biomedical research,
MRI, fMRI, microarray, and proteomics data are frequently collected for each
subject, involving hundreds of subjects; in molecular biology, massive sequencing
data are becoming rapidly available; in natural resource discovery and agricul-
ture, thousands of high-resolution images are collected; in business and finance,
millions of transactions are recorded every day. Frontiers of science, engineering,
and humanities differ in the problems of their concerns, but nevertheless share a
common theme: massive or complex data have been collected and new knowledge
needs to be discovered. Massive data collection and new scientific research have
strong impact on statistical thinking, methodological development, and theoreti-
cal studies. They have also challenged traditional statistical theory, methods, and
computation. Many new insights and phenomena need to be discovered and new
statistical tools need to be developed.

With this background, the Center for Statistical Research at the Chinese
Academy of Science initiated the conference series “International Conference on
the Frontiers of Statistics” in 2005. The aim is to provide a focal venue for re-
searchers to gather, interact, and present their new research findings, to discuss
and outline emerging problems in their fields, to lay the groundwork for future col-
laborations, and to engage more statistical scientists in China to conduct research
in the frontiers of statistics. After the general conference in 2005, the 2006 Inter-
national Conference on the Frontiers of Statistics, held in Changchun, focused on
the topic “Biostatistics and Bioinformatics”. The conference attracted many top
researchers in the area and was a great success. However, there are still a lot of
Chinese scholars, particularly young researchers and graduate students, who were
not able to attend the conference. This hampers one of the purposes of the con-
ference series. However, an alternative idea was born: inviting active researchers
to provide a bird-eye view on the new developments in the frontiers of statistics,
on the theme topics of the conference series. This will broaden significantly the
benefits of statistical research, both in China and worldwide. The edited books in
this series aim at promoting statistical research that has high societal impacts and
provide not only a concise overview on the recent developments in the frontiers of
statistics, but also useful references to the literature at large, leading readers truly
to the frontiers of statistics.

This book gives an overview on recent development on biostatistics and bioin-
formatics. It is written by active researchers in these emerging areas. It is intended
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to give graduate students and new researchers an idea where the frontiers of bio-
statistics and bioinformatics are, to learn common techniques in use so that they
can advance the fields via developing new techniques and new results. It is also
intended to provide extensive references so that researchers can follow the threads
to learn more comprehensively what the literature is and to conduct their own
research. It covers three important topics in biostatistics: Analysis of Survival
and Longitudinal Data, Statistical Methods for Epidemiology, and Bioinformat-
ics, where statistics is still advancing rapidly today.

Ever since the invention of nonparametric and semiparametric techniques in
statistics, they have been widely applied to the analysis of survival data and lon-
gitudinal data. In Chapter 1, Jianging Fan and Jiancheng Jiang give a concise
overview on this subject under the framework of the proportional hazards model.
Nonparametric and semiparametric modeling and inference are stressed. Dongling
Zeng and Jianwen Cai introduce an additive-accelerated rate regression model for
analyzing recurrent event in Chapter 2. This is a flexible class of models that
includes both additive rate model and accelerated rate models, and allows simple
statistical inference. Longitudinal data arise frequently from biomedical studies
and quadratic inference function provides important approaches to the analysis of
longitudinal data. An overview is given in Chapter 3 on this topic by John Dziak,
Runze Li, and Annie Qiu. In Chapter 4, Yi Li gives an overview on modeling and
analysis of spatially correlated data with emphasis on mixed models.

The next two chapters are on statistical methods for epidemiology. Amy Laird
and Xiao-Hua Zhou address the issues on study designs for biomarker-based treat-
ment selection in Chapter 5. Several trial designs are introduced and evaluated.
In Chapter 6, Jinbo Chen reviews recent statistical models for analyzing two-
phase epidemiology studies, with emphasis on the approaches based on estimating-
equation, pseudo-likelihood, and maximum likelihood.

The last four chapters are devoted to the analysis of genomic data. Chapter 7
features protein interaction predictions using diverse data sources, contributed by
Yin Liu, Inyoung Kim, and Hongyu Zhao. The diverse data sources information
for protein-protein interactions is elucidated and computational methods are in-
troduced for aggregating these data sources to better predict protein interactions.
Regulatory motif discovery is handled by Qing Zhou and Mayetri Gupta using
Bayesian approaches in Chapter 8. The chapter begins with a basic statistical
framework for motif finding, extends it to the identification of cis-regulatory mod-
ules, and then introduces methods that combine motif finding with phylogenetic
footprint, gene expression or ChIP-chip data, and nucleosome positioning infor-
mation. Cheng Li and Samir Amin use single nucleotide polymorphism (SNP)
microarrays to analyze cancer genome alterations in Chapter 9. Various methods
are introduced, including paired and non-paired loss of heterozygosity analysis,
copy number analysis, finding significant altered regions across multiple samples,
and hierarchical clustering methods. In Chapter 10, Evan Johnson, Jun Liu and
Shirley Liu give a comprehensive overview on the design and analysis of ChIP-
chip data on genome tiling microarrays. It spans from biological background and
ChIP-chip experiments to statistical methods and computing.

The frontiers of statistics are always dynamic and vibrant. Young researchers
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are encouraged to jump into the research wagons and cruise with tidal waves of
the frontiers. It is never too late to get into the frontiers of scientific research.
As long as your mind is evolving with the frontiers, you always have a chance to
catch and to lead next tidal waves. We hope this volume helps you getting into
the frontiers of statistical endeavors and cruise on them thorough your career.

Jianging Fan, Princeton
Xihong Lin, Cambridge
Jun Liu, Cambridge
August 8, 2008
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Chapter 1

Non- and Semi- Parametric Modeling
in Survival Analysis *

Jianging Fan ' Jiancheng Jiang *

Abstract

In this chapter, we give a selective review of the nonparametric modeling
methods using Cox’s type of models in survival analysis. We first intro-
duce Cox’s model (Cox 1972) and then study its variants in the direction
of smoothing. The model fitting, variable selection, and hypothesis testing
problems are addressed. A number of topics worthy of further study are
given throughout this chapter.

Keywords: Censoring; Cox’s model; failure time; likelihood; modeling;
nonparametric smoothing.

1 Introduction

Survival analysis is concerned with studying the time between entry to a study and
a subsequent event and becomes one of the most important fields in statistics. The
techniques developed in survival analysis are now applied in many fields, such as
biology (survival time), engineering (failure time), medicine (treatment effects or
the efficacy of drugs), quality control (lifetime of component), credit risk modeling
in finance (default time of a firm).

An important problem in survival analysis is how to model well the con-
ditional hazard rate of failure times given certain covariates, because it involves
frequently asked questions about whether or not certain independent variables are
correlated with the survival or failure times. These problems have presented a
significant challenge to statisticians in the last 5 decades, and their importance
has motivated many statisticians to work in this area. Among them is one of the
most important contributions, the proportional hazards model or Cox’s model and
its associated partial likelihood estimation method (Cox, 1972), which stimulated

*The authors are partly supported by NSF grants DMS-0532370, DMS-0704337 and NIH
RO1-GMO072611.

tDepartment of ORFE, Princeton University, Princeton, NJ 08544, USA, E-mail: jqfan@
princeton.edu

{Department of Mathematics and Statistics, University of North Carolina, Charlotte, NC
28223, USA, E-mail: jjiangl@uncc.edu



4 Jianging Fan, Jiancheng Jiang

a lot of works in this field. In this chapter we will review related work along this
direction using the Cox’s type of models and open an academic research avenue for
interested readers. Various estimation methods are considered, a variable selection
approach is studied, and a useful inference method, the generalized likelihood ratio
(GLR) test, is employed to address hypothesis testing problems for the models.
Several topics worthy of further study are laid down in the discussion section.

The remainder of this chapter is organized as follows. We consider univariate
Cox’s type of models in Section 2 and study multivariate Cox’s type of models
using the marginal modeling strategy in Section 3. Section 4 focuses on model
selection rules, Section 5 is devoted to validating Cox’s type of models, and Sec-
tion 6 discusses transformation models (extensions to Cox’s models). Finally, we
conclude this chapter in the discussion section.

2 Cox’s type of models

Model Specification. The celebrated Cox model has provided a tremendously
successful tool for exploring the association of covariates with failure time and
survival distributions and for studying the effect of a primary covariate while ad-
justing for other variables. This model assumes that, given a g-dimensional vector
of covariates Z, the underlying conditional hazard rate (rather than expected sur-
vival time T'),

1
A(tlz) = A}l_r'n+ Al — P T<t+ AT >2t,Z =2z}

is a function of the independent variables (covariates):
A(t|z) = o(t)¥(z), (2.1)

where ¥(z) = exp(1(z)) with the form of the function ¢(z) known such as ¥(z) =
BTz, and Ao(t) is an unknown baseline hazard function. Once the conditional
hazard rate is given, the condition survival function S(t|z) and conditional density
f(t|z) are also determined. In general, they have the following relationship:

S(tlz) = exp(-A(tz), [f(t|z) = A(t|z)S(¢]2), (2.2)

where A(t|z) = fo (t|z)dt is the cumulative hazard function. Since no assump-
tions are made about the nature or shape of the baseline hazard function, the Cox
regression model may be considered to be a semiparametric model.

The Cox model is very useful for tackling with censored data which often hap-
pen in practice. For example, due to termination of the study or early withdrawal
from a study, not all of the survival times T3, - - - ,T,, may be fully observable. In-
stead one observes for the i-th subject an event time X; = min(T;, C;), a censoring
indicator 8; = I(T; < C;), as well as an associated vector of covariates Z;. Denote
the observed data by {(Z;, X;,8;) : ¢ = 1,---,n} which is an i.i.d. sample from
the population (Z, X,6) with X = min(7,C) and § = I(T < C). Suppose that
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the random variables T and C are positive and continuous. Then by Fan, Gijbels,
and King (1997), under the Cox model (2.1),

E{$|Z =z}
= 2.3
U(z) ETAo(X)Z = 2] (2.3)
where Ag(t) fo Ao(u) du is the cumulative baseline hazard function. Equation

(2.3) allows one to estlmate the function ¥ using regression techniques if \o(t) is
known.

The likelihood function can also be derived. When &; = 0, all we know is
that the survival time T; > C; and the probability for getting this is

P(T; > Ci)Z;) = P(T; 2 X,|Z;) = S(Xi|Z;),

whereas when §; = 1, the likelihood of getting T; is f(T;|Z;) = f(X;|Z;). Therefore
the conditional (given covariates) likelihood for getting the data is

L= HfX|Z@)HS(X|Z I1 Mxilz) st1zz), (2.4)

6;=1 §;i=1

and using (2.2), we have

L= ) los(\(XilZ:)) - > A(Xi|Z:)

§;=1

= Z@' log(A(Xi|Z4)) — D A(Xi|Zy). (2.5)
For proportional hazards model (2.1), we have specifically
L= Za log(Xo(X:)¥(Z,)) — ZAO(X (2.6)

Therefore, when both 4(-) and A¢(-) are parameterized, the parameters can be
estimated by maximizing the likelihood (2.6).

Estimation. The likelihood inference can be made about the parameters in model
(2.1) if the baseline Ag(-) and the risk function (-) are known up to a vector of
unknown parameters @ (Aitkin and Clayton, 1980), i.e.

Ao(-) = Xo(8) and () =(;8)-

When the baseline is completely unknown and the form of the function ¥(-) is
given, inference can be based on the partial likelihood (Cox, 1975). Since the full
likelihood involves both B and Ao(t), Cox decomposed the full likelihood into a
product of the term corresponding to identities of successive failures and the term
corresponding to the gap times between any two successive failures. The first term
inherits the usual large-sample properties of the full likelihood and is called the
partial likelihood.
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The partial likelihood can also be derived from counting process theory (see
for example Andersen, Borgan, Gill, and Keiding 1993) or from a profile likelihood
in Johansen (1983). In the following we introduce the latter.

Example 1 [The partial likelihood as profile likelihood; Fan, Gijbel, and King
(1997)] Comnsider the case that (z) = ¥(z;3). Let t; < .-+ < ty denote the
ordered failure times and let (¢) denote the label of the item failing at #;. Denote
by R; the risk set at time #;—, that is R; = {j : X; > t;}. Consider the least
informative nonparametric modeling for Ag(-), that is, Ag(t) puts point mass 6,
at time ¢; in the same way as constructing the empirical distribution:

N
Ao(t;0) =D 8;I(t; < ). (2.7)
j=1
Then
N
Ao(Xi;0) = _6,I(i € Ry). (2.8)
j=1

Under the proportional hazards model (2.1), using (2.6), the log likelihood is

log L = Z[di{log)\o(Xi; 0) +v¥(Zi; 8)}

i=1
—Ao(X; 6) exp{v(Zi; B)}]. (2.9)
Substituting (2.7) and (2.8) into (2.9), one establishes that

logL = Z[logaj +¥(Z); B)]

=1

=) 61 € Ry) exp{y(Z:; B)}. (2.10)

i=1 j=1

Maximizing log L with respect to 6; leads to the following Breslow estimator of
the baseline hazard {Breslow (1972, 1974)]

;= [ exotw(z:0))] (211)

i€ER;

Substituting (2.11) into (2.10), we obtain

maxlog L = 3 (¥(Z; 8) ~ log| I exp{w(Z5:8)}]) - I.
o i=1 JER;
This leads to the log partial likelihood function (Cox 1975)

n

4B) = 3 ({2 B) ~og[ Y exn{y(Zs: 9} ). (2.12)

=1 JER;
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An alternative expression is

n

68) = 3 (#(Z3) - oSV, (X exp (w259},

i=1 j=1

where Y;(t) = I(X; > t) is the survival indicator on whether the j-th subject
survives at the time ¢.

The above partial likelihood function is a profile likelihood and is derived
from the full likelihood using the least informative nonparametric modeling for
Ao(+), that is, Ag(t) has a jump 6; at ¢;. o

Let 3 be the partial likelihood estimator of 8 maximizing (2.12) with respect
to 8. By standard likelihood theory, it can be shown that (see for example Tsiatis
1981) the asymptotic distribution V(B — B) is multivariate normal with mean
zero and a covariance matrix which may be estimated consistently by (n=11 (ﬁ))“l,

where
_ [T1SB,t) [ S1(B:1)\®?
10= [ sy (san) |0

and for k=0,1,2,

n

Sk(B,t) = Y Ya(t)¥' (Zs; B)®* exp{¥(Zs; B},

i=1

where N(t) = I(X < t,6 = 1), and x® = 1,x,xx”, respectively for k¥ = 0,1
and 2.

Since the baseline hazard A¢ does not appear in the partial likelihood, it
is not estimable from the likelihood. There are several methods for estimating
parameters related to Ag. One appealing estimate among them is the Breslow
estimator (Breslow 1972, 1974)

1,

hot) = [ [Svenzial] {3 ave), 2.13)

i=1

where N;(s) = I(X; < s,0; = 1).

Hypothesis testing. After fitting the Cox model, one might be interested in
checking if covariates really contribute to the risk function, for example, checking
if the coefficient vector B is zero. More generally, one considers the hypothesis
testing problem

Ho: B =0,

From the asymptotic normality of the estimator B, it follows that the asymptotic
null distribution of the Wald test statistic

(8 — Bo)TI(B)(B - By)



