ELASTICITY

Zhang—jian i Han

=R RKEE BiF RE

R St %I LK FHRL 42

BEIJING INSTITUTE OF TECHNOLOGY PRESS



HE “+21" BEEHEFREXETEATER

ELASTICITY

Zhang-jian Wu
Hai-jun Wu
Feng Han

ROIEFIE LK F 4% 4

BEIJING INSTITUTE OF TECHNOLOGY PRESS



Abstract

The purpose of this book is to introduce the basic knowledge about the classic elasticity theories and the associated
research achievements by the authors. The whole book is constructed on the basis of the course syllabuses and the con-
tents of elasticity used in the past few years at Beijing Institute of Technology, China and the University of Manchester,
UK. In order to meet the requirement of bilingual pedagogic development in higher education, and with reference to
some classic textbooks on elasticity and newly-obtained teaching and leaming outputs, such a content arrangement of this
book can currently be more appropriate and convenient for readers to study elasticity under the dual-language environment.

By reading this book as well as other relevant Chinese-version textbooks, the readers should be able to com-
mand the fundamental knowledge of elasticity, comprehend some related standard technical terms and enhance their
level of professional English. The book is intended for senior undergraduate and postgraduate engineering students,
especially for engineering mechanics students, of higher education engineering institutes. It can also be considered
as an English reference for engineers, researchers and novices.
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PREFACE

This book is, to a large extent, an outgrowth of the lecture notes used by the authors during the
past few years in courses on Elasticity at Beijing Institute of Technology and the University of
Manchester. It is assumed that the students and readers have already had some acquaintance with
the theory of rods and beams, concepts of stress and strain, and so forth, such as may be found in
basic texts on the strength of materials or “Mechanics of Materials.” It is intended to give advanced
undergraduate and graduate students sound foundations on which to build advanced courses such as
thermal elasticity, the theory of plasticity, plates and shells, mechanics of composite materials, wave
propagation, the finite element method, and those branches of mechanics which require the analysis
of stress and strain. Chapter 1 includes the fundamental assumptions adopted in the course of
elasticity theory and, for ready reference, certain mathematic preliminaries. The main content of the
book begins with stresses and equilibrium in Chapter 2. The theory of deformation is presented in
Chapter 3. These two chapters emphasize the independence of stress and strain and also show their
mathematical similarity. They are independent of material behaviour. Stress and strain are linked in
Chapter 4 by the introduction of three-dimensional stress-strain constitutive relations — generalised
Hooke’s law. Also in this chapter presentations include the strain energy density function, St.
Venant’s principle and the assembled basic field equations from Chapters 2 and 3 in order to
facilitate the explanation of general solution techniques in boundary value problems of elasticity.
From Chapters 5 to 7, two-dimensional boundary value problems, including plane stress and plane
strain, torsion and bending of bars, are selected for the application of these solution techniques. The
methods of solution are classical and elementary, but they show clearly what concepts and methods
are adopted. The more sophisticated methods for solving the boundary value problems of elasticity,
such as Love’s strain function, Galerkin method, complex potentials and integral transforms, have
been deliberately omitted. They are covered extensively in most traditional treatises on the
mathematical theory of elasticity. Readers are encouraged to appreciate some of these specialised
approaches after they are familiar with the contents of Chapters 5 through 7.

Chapter 8 involves an innovative hybrid technique to the exact solution of three-dimensional
elasticity — state space method. This method has been used in the area of automatic control theory
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for many years. To the best knowledge of the authors, this kind of method and relevant materials are
here, for the first time, introduced into a text book on elasticity. It is believed that the method will
have wide application in anisotropic elasticity and laminated systems.

Chapter 9 provides the clementary material for classical Kirchhoff plate theory, mainly
applicable to the analysis of isotropic thin plates.

Chapter 10 is concerned with formulating energy principles and their application to solid
continuum mechanics. The emphasis is on showing how the relevant equations of equilibrium and
compatibility can be deduced for this “approximate” theory of elasticity in a systematic and
consistent manner. The readers should bear in mind that this alternative approximate solution
approach is actually the theoretical foundation of the powerful finite element method (which has
been excluded from this book due to the limitation of book size). For the same reason, Cartesian
tensor notations have been adopted in this chapter only in order to eliminate tedious and lengthy
algebraic and integral computation.

A few special topics of elasticity in engineering such as thermal elasticity, propagation of
elastic waves, are shown in Chapter 11. Various strength theories and fracture criteria are listed too
for potential engineering applications. This chapter is intended to be an entry to the material for the
interests of some readers. Lecturers can decide if they are delivered or not.

Most of the material presented in the book is classical (except for the state space method of
Chapter 8), and for this reason very limited references are provided at the end of the book. All
important citations have been clearly indicated in the book. Hopefully, we will be forgiven any
omission deemed important. S.I. units are consistently used throughout the book.

The development of this textbook in the English language was strongly influenced by some
factors, such as the importance of English language due to the globalization of the world economy.
The bilingual teaching provides an excellent tool for those who wish to learn about elasticity using
the standard terminology of mechanics in both English and Chinese. We alsoe belicve that the
inclusion of large numbers of examples and exercises or Problems/Tutorial Questions makes this
book suitable for self-study. Students, researchers, or practitioners, novices and experts, will profit
much from reading the book and having it for reference in the years to come.

We wish to express our gratitude to Prof. Feng-lei Huang and Qing-ming Zhang from Beijing
Institute of Technology (BIT), Mr. Mike Maidens and Dr. Qing-ming Li from the University of
Manchester who read the manuscript and made useful suggestions and to Prof. Jia-rang Fan from
Hefei University of Technology with whom many sections were discussed. Sincere thanks are due
to Prof. Zhuo-cheng Ou from BIT for his critical review and positive comments, Ms. Yan-li Wang,
and Ms. Tong-hua Liang, from the Press of BIT, for their patience, proofreading and other supports
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during the preparation of the final manuscript. Special thanks are due to BIT Fund of Teaching
Material for financial support and to the publisher, the Press of BIT, for their interest, cooperation,
and help in publishing this book in a timely fashion.

Zhang-jian Wu
The University of Manchester, U.K.

Hai-jun Wu & Feng Han
Beijing Institute of Technology, China
September 2009
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CHAPTER 1 e e 0 @

BASIC ASSUMPTIONS AND MATHEMATICAL
PRELIMINARIES

@ 1.1 Introduction

Elasticity is a subject associated with the determination of the stresses and displacements in a
.body as a result of applied mechanical or thermal loads, for those cases in which the body reverts to
its original state on the removal of the loads. In this text book, we shall further restrict attention to
the case of linearly infinitesimal elasticity, in which the stresses and displacements are linearly
proportional to the applied loads and the displacements are small in comparisori with the
characteristic length dimensions of the body. Detailed assumptions and restrictions on the subject
can refer to Section 1.2,

Elastic theory was once a problem solver on its own with closed form solutions which are still
admirable and challenging even today. However, extensive and successful use of numerical
approaches in engineering, such as finite elements, have diminished to a great extent the need to
solve problems analytically, which usually requires enormous, sometimes overwhelming,
mathematical skills. The challenge to engineers today appears to be to make correct and effective
use of available problem solvers and to assess results obtained from the solvers. This can be
achieved only when the engineer understands the formulation of the problem before the solvers are
employed.

The main intention of our study of Elasticity is to promote the understanding of the concepts
and formulation of elasticity problems. Problem solving skills and techniques are relegated to an
adjunct role, being used to help in understanding or in making sense of a theoretical development.
Citation of some solvable problems in Elasticity is necessary in this book for us to overview its
theoretical frame. It is assumed that the readers possess preliminary knowledge of Structural
and Stress Analysis/Mechanics of Solids and Structures. Sometimes such knowledge comes
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ELASTICITY

from the prerequisite course called Strength of Materials which will be referred to in the
present book.

Strength of Materials deals with bars subjected to loads such as axial tension, compression,
torsion about the longitudinal axis and lateral bending. A common assumption is usual for all these
cases: the plane section assumption, i.e. a cross-section perpendicular to the axis of the bar deforms
into a plane section perpendicular to the axis of the deformed bar. Other restrictions are also needed
in order to validate the theoretical analysis, e.g. the bar should be sufficiently long compared with
its other dimensions.

Questions arise at this point. How to quantify these restrictions? What happens if a problem
goes beyond these restrictions? How to deal with objects other than bars, e.g. those shaped like a
two-dimensional plate or three-dimensional laminated structures? These questions set the scene
and the main content of the present study of Elasticity.

1.2 Basic Assumptions

All the éssumptions in Elasticity have appeared in Strength of Materials (not the wrong way
aroundl) and they will be put in a more rigorous and more explicit manner below.

For-tl;e material:

(1) Homogeneity means that material properties are the same at any point in the material.
Microscopically, no material can be homogeneous when one realises that materials are all
composed of molecules or atoms, in the case of metals, a larger unit is a grain. However, if an
“infinitesimal” volume contains a large enough number of these units, homogeneity is a reasonable
assumption on a statistical basis.

. Exceptions: reinforced concrete, sandwich laminates, etc.

(2) Continuity means that every material point is connected and infinitesimally close to the
one next to it. All materials carry discontinuous nature in one way or another microscopically.
When engineers describe the behaviour of a material at a point, they do not mean a mathematical
point (a mathematical point has zero area and zero volume). What they really mean is a small but
finite area or volume. They are sufficiently small that they can be regarded as “infinitesimal”
without losing any macroscopic feature of the material. If such small areas and volumes are much
larger than the characteristic dimension of the discontinuities involved (e.g. the grain size or the
distance between atoms), the material can be reasonably assumed to be continuous. Therefore,
whenever a small segment dx, a small area d4, etc. are mentioned, they are in fact a continued
segment and a continued area, etc.
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Exceptions: porous material, granular materials, material with cracks which could not be
treated as parts of total boundary of the material, etc.

(3) Isotropy 'means that material properties at a point are the same in any direction. It
depends on the arrangement of the microscopic material units within an “infinitesimal” volume. If
they are arranged at random, isotropy is statistically true.

Exceptions: fibre reinforced composites, wood, etc.

(4) Elasticity requires that the internal state, such as the strains in the material, reverts to the
original state after loads are removed, and, also, that the unloading have. to follow the same path as
when it was loaded up. It is reasonable for many materials when only small deformation is
involved.

Exceptions: problems involving large strain into plastic regime, some plastics of viscosity, etc.

(5) Linearity  requires that the loading path both in terms of load-deformation and
stress-strain relation, be a straight line. It is usually reasonable for small deformation problems.
Elasticity is a necessary condition of linearity but not sufficient. There are materials which are
nonlinear but elastic.

Exceptions: some nonlinear elastic rubbers, materials after yielding, etc.

For the deformation:

Small (infinitesimal) deformation is always assumed in Elasticity. Because of this, higher
terms of deformation (gradients of displacements) are negligible relative to non-vanishing lower
order terms. Also when equilibrium conditions are established, changes in geometry of the object as
a result of deformation can be ignored. It is reasonable in most engineering applications when the
deformation is very small relative to a relevant dimension of the object. The geometrical linearity is
hence applicable and linear superposition and a wide range of series and transform techniques can
be used.

Exceptions: finite deformation, buckling, etc.

For the load:

Only Conservative force and the force which is not the function of deformation are considered.
This is always reasonable when deformation is small.

Exceptions: pressure in large deformation problems, etc.

Note that there is pot a priori assumption made on deformation pattern such as the plane
section assumption in Strength of Materials. This is why Elasticity is a more general theory.
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1.3 Coordinate Systems and Transformations

Throughout the book unless otherwise specified, all references will be made with respect to a
rectangular Cartesian coordinate system, x, y and z. Other coordinate systems, such as polar
coordinates (2-D) and cylindrical coordinates (3-D) or spherical coordinates, are referred to for the
sake of simplicity for the particular problem under consideration. Necessary derivations will be
dealt with when they are required. However, for reference purposes, a table of transformations of
the derivatives and operators between rectangular Cartesian and cylindrical coordinate systems is
provided here as Table 1.1.

Table 1.1 Transformation of Coordinates and Various Mathematical Operations

Coordinate Rectangular Cartesian Coordinates (3-D): x- y-z | Cylindrical Coordinates (3-D): r-6-z (r=0)
Systems Rectangular Cartesian Coordinates (2-D): x-y Polar Coordinates (2-D): r-8(r=0)
x=rcos@ r= (47 )2
Coordinates y=rsinf f=tan" (/%)
Z2=Z Z=Z
Differentiation of dx = cos@dr-r sindd@ dr = cos@ dx+sind dy
ifferentiation o . .
Coordingtes dy = sin@dr+r cos8dé d@=—( sinf dx+cos@dy)/r
dz=dz dz=dz
Infinitesimal dS? = AP+ 452 = dr2+P? d6P+dZ
egment
Base Vectors i,j,k € ,€g,€;
v, v,
Vector V=iv +jv, +kv, =qv, V=ev, teyv,+ey, =4y,
! v,
(ad te b, 1. t, te I,
Tensor (2n
order) T=[T]=|t, ¢, t,. T=[Tl={t,, tle t,
tzx tzy tz tzr tzB tzz
" . ¢ i=e, cosf—eysinf ¢, = i cos#+j sind
Trg‘:s:%ttl:; ° j =e,sinbtregycos@ eg=—1 siné+j cos@
k=¢; e, =k
Differentiations di/dg=0 de, /dG=ey
of the Base dj/dé=0 deg/dO=—e,
Vectors dk/d@=10 de, /d8=0
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(continued)
Coordinate Rectangular Cartesian Coordinates (3-D): x- y-z | Cylindrical Coordinates (3-D): r-&z (r=0)
Systems Rectangular Cartesian Coordinates (2-D): x-y Polar Coordinates (2-D): r-8 (r=0)
F%* 8_¢ A
ox or
Gradient of a ;09 .0¢ L 09 _|3¢ _. 990 _1dp d¢_|13d¢
Scalar Field Vo=t i T e e Vo= g e 20t % 0]
29 g
L aZ J aZ
(v, % ] (2 2o w2
ox dx ox laarv I%r r I%r
Gradient of a _ _|9v, ?i oy, VV =tensor={ -2 e Y 1%
Vector Field YW=tmm=ok = rdg ¢80 w w ol
ov, dv, ov,
BL év_y CiA oz s dz
19z 0z 0z ; .
Divergence of a Ve _9v, v, v, _ _la(v) 1 1y, ov,
Veotor Field V.V =scalar= oy + > V ¥ =scalar = r 39 + ™
rﬂg+a"_w+ﬂ V-T:\fector
o oy O, t—le 100, O,
Divergence of 3. ot o or r ¥ 08 oz
A" ofa «T = =4 W rL
Tensor Field V s T = vector =< oo Ay + % _ %o ot,, t,,, +1, o 13, . dat,,
3 ar r radé oz
e T (B A, 1o, A,
[ox o Oz ] or roé oz
Laplacean of a 2 _a_¢ o o9 24-10( 09 L g
Scalar Field Ve oty FE v ¢_ r Br o ) 7 o

»1.4 Vector and Matrix Notations and Their Operations

In order to understand the expressions and formulas listed in Table 1.1, we are going to discuss
scalar, vector and tensor fields in much more details in this section.

By a scalar field we mean a function ¢ that assigns to each point in a three-dimensional

ik, "
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Fuclidean space (say a x-y-z rectangular Cartesian coordinate system) a scalar @(x,y,z) . A vector
in a"feétangular Carté;siati coordinate system, X y and z; is denoted by
o
v={F}=4v, (1.1)
vz
In Mathematics, a vector is also called a first order tensor. :
Second order tensors are important in Elasticity. They can be represented by 3x3 matrices,
which is denoted by
t, b, 1,
T=[T]=|¢t, t, . (1.2)
t, t, 1,

The above vector and matrix notations will be employed in the book, mainly for notation putrposes.

From time to time, coordinate transformations are required from the system x, y, z t0 another
x', y', z'. A vector transforms as follows

rectangular Cartesian system of different orientation,
v'=av o {V}=[4){r}

h%

v, s
that is v, t=[413v, (1.3)
v, v,

and a second order tensor [7] is transformed as
T'=ATA" or [T']=[4][T][4]

A t, t, 1.
or 4. t, 6 |=[4d]t. 1, & [4]" (1.4)
A te tp i
" [eos(x',x) cos(x’,y) cos(x’,z)
where [4] =] cos(¥', %) cos(y’,y) cos(y’,z) (1.5)
cos(z',x) cos(z,y) cos(z,z)

is an matrix of the direction cosines between the two Cartesian coordinate systems. The supetscript
symbol, T, represents transpose of a matrix. When system x', y’ and z' is obtained from x, y and z by

rotating through an angle o about the z-axis

W 8
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cosa sina 0
[4]=|-sina@ cosex O (1.6)
0 0 1

Several other operations of these (scalar, vector and tensor) fields are very important in the
establishment of fundamental equations and their solutions in Elasticity. Such mathematical
operations include, typically, gradient, divergence, etc.

For a differentiable scalar function ¢(x,y,z), we define the gradient of ¢ at any point (x, y,

z) by V¢, in which the symbol V is called the del operator and it can be expressed in terms of the
basis {e,} of a coordinate system by

]
V:E — .
,-e'axi ) a 7)

Obviously, V is a vector operator. Under the rectangular Cartesian system x, y, z , Eq.(1.7)
becomes

0 d d
V=i—+j—+k— 1.8
ox jay oz Wet)
since the base vector {e,} of this system is (i, j, k).
. For a differentiable vector function V'(x,y,z), we define the gradient of V at any point (x, y, z)
by a second-order tensor VYV or in components

av,

V), =V, =—% 1.9
V), =V, =5 (1.9)

VV  can be written in a matrix form based on Eq.(1.9),

oy, 9%, 3, ]

dx dx oJx

av. 9V, v
VY =| —= 4 g 1.10
T (10

v, I, o,

| 9z 9z 0Jz

It is the gradient of the vector ¥V (x,y,z).
This definition of the gradient for scalar and vector may be extended to include the gradient of

a second-order tensor field (and a resultant third-order tensor is expected), etc. Readers can work
them out if interested.

It is noticed that the dot product of the del operator



