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Preface

“. .. many eminent scholars, endowed with great geometric talent,
make a point of never disclosing the simple and direct ideas that guided
them, subordinating their elegant results to abstract general theories
which often have no application outside the particular case in question.
Geometry was becoming a study of algebraic, differential or partial
differential equations, thus losing all the charm that comes from its
being an art.”

H. Lebesgue, Legons sur les Constructions Géométriques, Gauthier-
Villars, Paris, 1949.

This book is based on lecture courses given to final-year students at the Uni-
versity of Nottingham and to M.Sc. students at the University of the West
Indies in an attempt to reverse the process of expurgation of the geometry
component from the mathematics curricula of universities. This erosion is in
sharp contrast to the situation in research mathematics, where the ideas and
methods of geometry enjoy ever-increasing influence and importance. In the
other direction, more modern ideas have made a forceful and beneficial impact
on the geometry of the ancients in many areas. Thus trigonometry has vastly
clarified our concept of angle, calculus has revolutionised the study of plane
curves, and group theory has become the language of symmetry.

To illustrate this last point at a fundamental level, consider the notion of
congruence in plane geometry: two triangles are congruent if one can be moved
onto the other so that they coincide exactly. This property is guaranteed by
each of the familiar conditions SSS, SAS, SAA and RHS. So congruent triangles
are just copies of the same triangle appearing in (possibly) different places. This
makes it clear that congruence is an equivalence relation, whose three defining
properties correspond to properties of the moves mentioned above:

xi
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o reflexivity — the identity move,
e symmetry — inverse moves,

e transitivity — composition of moves.

Thinking of these moves as transformations, for which the associative law holds
automatically, we have precisely the four axioms for a group: closure, associa-
tivity, identity and inverses.

The group just described underlies and in a sense determines plane geom-
etry. It is called the Euclidean group and occupies a dominant position in this
book. Its elements are isometries, as defined in Chapter 1, and a detailed study
of these occupies Chapters 2 and 4. The rather bulky Chapters 3 and 5 are
intended as crash courses on the theory of groups and group presentations re-
spectively, and both lay emphasis on groups that are semidirect products. Such
groups arise in the classification of discrete subgroups of the Euclidean group
in Chapters 6, 7 and 8, and corresponding tessellations (or tilings) appear in
Chapter 9. Regular tessellations of the sphere are classified in Chapter 10, and
tessellations of other spaces, such as the hyperbolic plane, form the subject
of Chapter 11. Finally, the notions of polygon in 2-space and polyhedron in
3-space are generalised in Chapter 12 to that of a polytope in n-dimensional
Euclidean space. Regular polytopes are then defined using group theory and
classified in all dimensions. The classification contains some surprises in di-
mension 4 and is achieved by as elegant a piece of mathematics as you might
imagine.

The exercises at the end of each chapter form an integral part of the book,
being designed to reinforce your grasp of the material. A large majority are
more or less routine, but a handful of more challenging problems are included
for good measure. Solutions to most of them, or at least generous hints, are
given later, and suggestions for background, alternative and further reading
appear towards the end of the book.

It is a pleasure to acknowledge my gratitude to a number of people: to
J.A. Green, B.H. Neumann, J.H. Conway and R.C. Lyndon for influence and
guidance over the years, and likewise to John Humphreys, Bob Laxton, Jim
Wiegold and Geoff Smith for valuable encouragement; to Maxine Francis, Kate
MacDougall and Aaron Wilson for skilful preparation of the typescript and
diagrams; to all at Springer-Verlag, especially David Anderson, Nick Wilson,
Susan Hezlet, David Ireland and Karen Borthwick, for efficient handling of
matters connected with production; and last but not least to the students who
provided much useful feedback on my lectures.

D.L.J.
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Metric Spaces and their Groups

In many of the physical sciences a fundamental role is played by the concept of
length: units of length are used to measure the distance between two points. In
mathematics the idea of distance, as a function that assigns a real number to a
given pair of points in some space, is formalised in terms of a few reasonable-
looking properties, or axioms, and the result is called a metric on that space.
Having defined a structure such as this on a set, it is natural to study those
transformations, or maps, of such sets which preserve that structure. The re-
quirement that these maps be invertible then leads naturally into the theory
of groups.

Many types of groups arise in this way. Important examples are permutation
groups, linear groups, Galois groups and symmetry groups. The story of the
last of these begins as follows.

1.1 Metric Spaces
Our intuitive conception of distance is made precise in the following definition.
Definition 1.1

A metric on a set X is a map d: X x X — R with the following properties:

M1) d(z,y) > 0 Vz,y € X, with equality if and only if z = y;
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M2) d(z,y) = d(y,z) Vz,y € X;
M3) d(z,y) +d(y,2) 2> d(z,z) Vz,y,2 € X.

A set X with a metric d is called a metric space, written (X, d).

Each of these axioms is in accordance with our intuition. Thus, referring to
elements of X as points, M1 says that the distance between two distinct points
is positive, and the distance from a point to itself is zero. M2 says that d is
symmetric: the distance between two points is the same in either direction. M3

is the famous triangle inequality: the direct route between two points is the
shortest. Time for some examples.

Example 1.1

Let X be any set and for z,y € X define d(z,y) = 0if z = y, d(z,y) = 1 if
T #y.

To check the axioms, observe that all three parts of M1 are trivial conse-
quences of the definition of d, and the same goes for M2. As to M3, the triangle
inequality can only fail if the right-hand side is 1 and both terms on the left
are equal to zero. But this means that

T#z2, z=y and y=2z,

and this is a contradiction. Hence, M3 holds and d is indeed a metric on X ,
sometimes referred to as the discrete metric.

Example 1.2

Let X =R and for 7,y € R define d(z,y) = |z — y|, where the modulus |z} of
a real number z is defined in the usual way:

|z| = T ifz >0,
—z ifz<O.

The axioms correspond to obvious properties of the modulus function, and
their verification, as in the next example, is left as an exercise. Both of the next

two examples represent attempts to generalise this example from the real line
R to the Cartesian plane R2.

Example 1.3
Let X = R? and for x = (z1,22), y = (¥1,%2) € R define
d(x,y) = |z1 — p| + |22 — 12l
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This metric is sometimes referred to as the Manhattan metric on RZ.

Example 1.4
Again let X = R? and for x = (21,22), ¥y = (y1,¥2) € R? define

d(x,y) = +V(11 — 1)? + (2 — 72)?, (1.1)

the non-negative root. Unwieldy though it looks, this is the one we want. It is
called the Pythagorean metric, and when we refer to R? as a metric space
it is this metric we have in mind.

As usual, M1 and M2 are pretty obvious, being consequences of simple facts
about real numbers such as

?=0+z=0, z2=(-x)%

M3 on the other hand is equivalent to the assertion that the length of one side
of a plane triangle is less than or equal to the sum of the lengths of the other

two, whence its epithet. For a formal proof in terms of coordinates, take any
three points

x = (z1,22), Y= @¥n¥), 2z=(2,22)

in the plane, and define real numbers a,, a2, b, b2 by setting

(1n,12) = (21 + a1, 72 + a2),
(z1,22) = (y1 + by, 2 + b2)
= (z1 + a1 + by, T2 + a2 + b2).

Then it is required to prove that

Vol + a3 + /02 + 8% > Vla ¥ 51)7 + (a2 + b2)°. (1.2)
Since squares of real numbers are non-negative, we have
(a1bz — az1)* >0,

which implies that
alb? + a3b? > 2a1b1a2bs.

Adding a3b? + a3b to both sides and taking square roots,

\/a¥ + a? \/b"{ + b2 > a1by + azb.

Multiplying by 2, adding a? + a2 + b? + b3 to both sides and again taking square
roots, we obtain (1.2).
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1.2 Isometries
Definition 1.2

An isometry of a metric space (X,d) is a bijective map u: X — X that
preserves distance:

d(zu,yu) =d(z,y) Vz,y € X. (1.3)

The set of all isometries of (X,d) is denoted by Isom(X,d), or just Isom(.X)
where d is taken for granted.

Notice that maps are written on the right: the image of x under u is denoted
by zu rather than u(x). This is standard practice in those parts of mathematics
where the main interest in maps is centred on their composition, for then uv
denotes the composite of two maps u and v in this order (first u, then v).

Another point to note is that this definition involves some redundancy. A
bijection is by definition a map that is both injective and surjective. It is left
to the Exercises to show that any map u: X — X satisfying (1.3) is necessarily
injective (but not necessarily surjective).

Now recall that bijective maps are precisely those that have inverses: there
is a map u~! such that

uu ! =1=u"lu, (1.4)

where 1 denotes the identity map, z1 = z Vx € X. Then, assuming that u
satisfies (1.3), we compute

dzu™!,yu™!) = dzu~ v, yu"'u) = d(z1,y1) = d(z,y)

for all z,y € X. This shows that if u is an isometry of X, then so is u™1!.

Next observe that the identity map 1: X — X is obviously an isometry
and that composition of maps is always associative, that is, independent of the
bracketing.

Finally, consider the composite uv of two isometries u,v € Isom(X). Since
uv has an inverse, namely v—!'u~1, it is a bijection. And since v, u satisfy (1.3),
we have

d(zuv, yuv) = d(zu,yu) = d(z,y)

for all z,y € X. Hence, uv is again an isometry of X. We say that Isom(X) is
closed under composition of maps.

The last three paragraphs prompt the next definition and constitute a proof
of our first theorem.



