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Preface

I have been teaching the course Advanced Quantum Mechanics to graduate students
at Huazhong Normal University since 1984. Using various textbooks published inside
and/or outside China as references, I was able to assemble together a few topics, such
as coherent state, WKB approximation, wave-packet scattering, Lippmann-Schwinger
equation, etc for the graduate course that were not already covered by the undergrad-
uate Quantum Mechanics course. The idea of writing a new book first emerged in
2003 under the encouragement of my students, especially Ms. Xiaoyan Lin. A first
version of this book appeared in 2004 and was printed for the graduate course to
use. From then on the bock was revised and printed every year for the course. After
several teaching-revision cycles, it is now ready for publication.

Advanced quantum mechanics is a basic course for the graduate students who
plan to specialize in various fields of physics, e.g. theoretical physics, high energy
physics, nuclear physics, condensed matter physics, atomic and molecular physics,
optics, astrophysics, etc. Taking this diversity of specialities into account, in addi-
tion to constructing a strict scientific framework for quantum mechanics, the present
manuscript covers a comparatively wide range of topics.

Starting from the experimentally observed wave-particle duality of microscopic
system, the Hilbert space is introduced naturally. With the exception of the basic
principles of quantum mechanics, no other assumption or “principle” is represented
directly and simply by writing. In particular, the physical quantities, such as momen-
tum, angular momentum, are not given through writing out manually their operators
in some special representation, e.g. coordinate representation, but are defined through
their commutators, starting from their fundamental property of being generators of
continuous space transformation. The “uncertainty principle”, “Pauli incompatibility
principle” are no longer principles, but are derivable theorems in quantuin mechanics.

There are already quite a number of textbooks for advanced quantum mechanics
available. What is the peculiarity of this book that makes it worthy of publication?
We have the following considerations.

(1) In studying advanced quantum mechanics, different specialities have some-
what different interest. Take coherent state as an example, students specializing in
optics are more interested in the displacement state and squeezed state, while those
specializing in high energy physics pay more attention to the coherent states as basis
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for expanding quantum state, i.e. the integral-function representation, because it is
the base of field quantization. As a basic course, advanced quantum mechanics has
to account for the requirements from various specialities.

(2) As the first physics course that the students encounter in their graduate study,
advanced quantum mechanics should not only provide the basic knowledge for their
forth-coming courses, but also should train the graduate students in self-studying and
in mastering English reading and writing, both of which are important for their future
physics study and research.

Due to the above considerations we wrote this book in English and covered a
comparatively wide range of topics to meet the different demands of various fields.
In order to motivate the students to become more independent in learning and also
to cover more material in a one-semester course, only the main ideas and methods
are written in the text and most of the derivation and proofs are embedded in the
exercises. Hints are given for some relatively difficult exercises.

The study of quantum mechanics using this textbook has to be carried out in
an interactive way. For the learning to be effective, it is essential that the students
take the course actively. In teaching this course, I have always make it a priority
to elicit the student’s go-aheadism. The questions, comments and recommendations
from the students play an important role in finalizing this manuscript. Among the
students who have contributed most, Ms. Zhu Yan is one of them. She also compiled
the Index. Moreover, Dr. Yu Meiling, a postdoc at Wuhan University, proposed a
number of valuable suggestions and comments, and constructed the Hints to Selected
Exercises. The manuscript is well finalized under the effective cooperation among the
three of us.

I hope that this book may be of some use for the students learning advanced
quantum mechanics. Further comments and/or suggestions are heartily welcomed.

i Liamshone

April 20, 2009
in Wuhan
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Chapter 1

Quantum states and physical quantities

Experiments show that microscopic particles possess the special property of particle-
" wave duality. They are particles in the sense that all their measurable quantities are
those of particles, e.g. mass, charge, energy, momentum, angular momentum, etc. .
However, they are not classical particles, because for them the results of measurement
are in general probabilistic instead of deterministic. Furthermore, while propagating
they can interfere and/or diffract, showing a typical wave property. The experimen-
tally observed particle-wave duality is the base of the axioms of quantum mechanics.

1.1 Quantum states as linear vectors in Hilbert space

1.1.1 Quantum states as linear vectors

Waves can interfere and/or diffract because they posses the property of superposition
— two or more waves can exist simultaneously in a same space region. This can
be easily checked. For example, in the classroom there are simultaneously electro-
magnetic waves emitted by various radio-stations. Superposition is the characteristic
property of waves.

Microscopic systems, having wave property, obey the principle of superposition .

Definition 1.1.1  One or several microscopic particles, together with the interaction
between them and the external field in which they are moving, is referred to as a
microscopic system. A microscopic system may have a certain boundary and the
boundary condition is included in its definition.

Definition 1.1.2 The principle of superposition can be stated as: if ¥, and ¢, are
two possible states of a microscopic system, then

Y = coPa + oo (1.1.1)
is also a possible state of this microscopic system, where ¢, and ¢, are two constants.
Since v, ¥, -+- are not directly measurable, c,, ¢, --- are in general complex
numbers.

Mathematically, Eq. (1.1.1) means that the set of all possible states of a micro-
scopic system forms a complex linear space. The generally accepted symbol, and also
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the most convenient one, for the state vector of microscopic system in the correspond-
ing linear vector space is that proposed by Dirac — |a), |b), -- -, which are referred
to as ket vectors.

These vectors are not directly measurable. What can be measured is the scalar
product of vectors. In order to account for the fact that measurable quantities could
only take real values, we define the conjugate vectors of |a), |b), - - - as

&)t =(al, BT =(b], -, (1.1.2)

which are called bra vectors. For a certain microscopic system the set of bra vectors
forms a linear vector space conjugate to the space formed by the corresponding ket
vectors.

Note that the symbol 1 (pronounced as “dag”) is different from the symbol *
(pronounced as “star”) of complex conjugate. Complex conjugate * concerns complex
numbers only, while T concerns state vectors and operators (see below) and is referred
to as Hermitian conjugate. The Hermitian conjugate of a complex number is just its
complex conjugate.

Definition 1.1.3 The product of the state vectors of two states a and b, denoted
by (a|b}, is a complex number, linearly dependent on both (a| and |b).

A main rule for the Hermitian conjugate of product is that: the Hermitian conju-
gate of a product of several objects is equal to the product of the Hermitian conjugates
of the objects in reverse order. From this rule we have

(alo)* = [((ah) (BN = (16)" (al)" = (bla), (1.1.3)

and, consequently, (a|a) = (a|a)* is a positive-definite real number. The physical
meaning of this positive-definite real number is that, its square root /{a|a), which is
referred to as the norm of the vector |a), is the probability of finding a particle in the
state |a).

If the microscopic system in consideration consists of only one particle, we should
have

(ala) = 1. (1.1.4)

This is called the normalization condition of the state vector |a).

1.1.2 Awxiom of quantum mechanics concerning quantum states

Consider a one-particle system. Its state vector should be normalized to unity. In
case (a|la) = N # 1, we can take another vector |a’) = \/1/N |a) as the state vector,
so that (a’|a’) = 1. This procedure is called the normalization of state vector.

A state vector |a) is normalizable if and only if (a|a) is finite

(ala) < oo. (1.1.5)

Every physically meaningful state vector should be normalizable, therefore, all the
vectors in the complex linear space that describe the states of a microscopic system
should satisfy the condition (1.1.5). Such a complex linear space is referred to as
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the Hilbert space corresponding to the microscopic system. The axiom of quantum
mechanics concerning quantum states is:

Axiom I The states of a microscopic system are described by the vectors in the
Hilbert space corresponding to the system.

Since only the scalar product {(a|a) of a state vector |a) and its Hermitian conjugate
(a] is ' measurable, and multiplying |a) by a complex number ¢ with unit norm does
not affect the scalar product (a|a), the vectors |a) and e'¥|a), where ¢ is an arbitrary
real number, describe the same quantum state. Therefore, a quantum state vector is
determined within an arbitrary phase. This statement is valid only for a single state
vector. If there are several state vectors then we have only the freedom to multiply
them by a global phase factor, while the relative phase between different state vectors
are physically relevant and cannot be arbitrarily changed.

The following two definitions are useful:

Definition 1.1.4 Two vectors |a) and |b) are said to be parallel to each other if
|a) = c |b), (1.1.6)
where ¢ is a constant.

Definition 1.1.5 Two vectors |a) and |b) are said to be perpendicular or orthogonal
to each other if

(alb) = 0. (1.1.7)

1.2 Physical quantities as operators in Hilbert space

1.2.1 FEigenvalue and eigenvector of Hermitian operator

An operator F in a Hilbert space is defined by its action on the vectors in the space
F'|a) = |b). (1.2.1)

If this relation is given for every vector |a) in the space, then the operator F' is defined.

In general, when an operator F acts on a vector |a) it changes the direction of this
vector, i.e. F'|a) is in general unparallel to |a). But there exist some special directions
in the space, when a vector points along these directions, the action of the operator
F does not change the direction of this vector. We have the definition.

Definition 1.2.1 If
Fliy = fili), (12:2)

where f; is a number, then |i) is an eigenvector of the operator F' and f; is the
corresponding eigenvalue.

Some other definitions concerning the operators follow.
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Definition 1.2.2 An operator F'is linear if it obeys the following relation:
F(cgla) + cp|b)) = cuFla) + cp F|b), (1.2.3)
where ¢, and ¢, are complex numbers.

Definition 1.2.3 The sum F + G and preduct F'G of two linear operators F and
G are defined by their action on vectors:
(F+G)la) Fla) + Ga), (1.2.4)
(FG)la) = F(Glay),

where |a) is an arbitrary vector.

We see that the product of two operators is essentially the successive operation of
these two operators. In general, the successive operation of two operators and the
same in reverse order are unequal, i.e. in general F (G la)) # G (F|a}). For this
reason, the product of two operators is in general non-commuting, i.e. in general
FG # GF.

Let us compare the set of complex numbers and the set of linear operators. Sum-
mation and multiplication are both defined in these two sets but the multiplication of
two complex numbers is always commuting while that of two operators is in general
non-commuting. In this sense the complex numbers are referred to as c-numbers while
operators as g-numbers.

The axiom of quantum mechanics concerning physical quantities is that the phys-
ical quantities of a microscopic system are represented by linear operators in the cor-
responding Hilbert space.

The full content and meaning of this statement will be explored in subsection
1.2.3. Here we only point out an important issue: The result of the measurement of
a physical quantity F in the state |a) of a microscopic system is probabilistic. The
corresponding average value, or expectation value, is

F® = (a|F|a). (1.2.6)
This value must be a real number, so we must have
(alFla) = (a|F|a)* = (a|Fla)! = |a)T FH{a|' = (a|FT|a).

Since |a) is an arbitrary vector, this requirement leads to F = F', i.e. F must be
equal to its own Hermitian conjugate.
Let us give the definition concerning different kinds of operator.

Definition 1.2.4 If
Ft=F Gi=-G, Ul=U", (1.2.7)
where U~! is the inverse operator of U defined by
vut=v"'v=1, (1.2.8)

then F is referred to as Hermitian self-conjugate operator or Hermitian operator for
short; G is anti-Hermitian operator; and U is referred to as unitary operator.
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Therefore, the axiom of quantum mechanics concerning physical quantities stated
above can be expressed more precisely as: the physical quantities of a microscopic
system are represented by Hermition self-conjugate operators (or Hermitian operators
for short) in the corresponding Hilbert space.

Before explaining further the contents of this axiom, let us first give a number of
important theorems concerning Hermitian operators.

Theorem 1.2.1 The eigenvalues of a Hermitian operator are real numbers.
Proof. Multiplying Eq. (1.2.2) from the left by (i|, we get

(i|Fli) = (il fild) = filils) = fi,
which shows that the eigenvalue f; of an operator F' equals the average value of

F' in the eigen-state |¢). Since average values of a Hermitian operator are real, its
eigenvalues are real too. O

Theorem 1.2.2 The eigenvectors of a Hermitian operator corresponding to differ-
ent eigenvalues are orthogonal.

Proof. Suppose F|i) = fili), F|j) = f;|7) and f; # f;. Multiply the two equations
from the left by (j| and (i|, respectively,

(JIFli) = fi(§li),  CGIFIF) = £5(ld)-
Take the Hermitian conjugate of the first equation and minus the second one. Noticing

Ft=F, fr = fi, we get 0 = (f; — f;)(¢|5). Since f; # f;, the result (¢|j) = 0 follows,
i.e. |1) and |j) are perpendicular to each other. d

Sometimes, there are several eigenvectors corresponding to one eigenvalue.

Definition 1.2.5 If there are more than one eigenvectors corresponding to one
eigenvalue, then this eigenvalue is said to be degenerate.

Theorem 1.2.3 Any linear combination of the different eigenvectors corresponding
to a degenerate eigenvalue is still an eigenvector corresponding to the same eigenvalue.

Proof. Since the eigenvalue equation (1.2.2) is linear, the validity of the theorem
is evident. ]

In case the eigenvalue f; is degenerate, there are more than one eigenvectors cor-
responding to this eigenvalue. Through linear combination we get an infinite number
of eigenvectors corresponding to the eigenvalue f;, i.e. the number of eigenvectors
corresponding to a degenerate eigenvalue is infinite. These eigenvectors constitute a
linear vector space, which is a subspace of the Hilbert space of the system in consid-
eration. We call this subspace the eigen-subspace corresponding to the eigenvalue f;.
Let m be the dimension of this space, then there are m and no more than m linearly
independent vectors in this space. This m independent vectors can be chosen to be
mutually perpendicular and normalized. We denote them as |i,v), v =1,2,--- ,m.

Definition 1.2.6 The dimension of the subspace corresponding to a degenerate
eigenvalue is called the degree of degeneration of this eigenvalue.
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We have the theorem:

Theorem 1.2.4 Corresponding to a degenerate eigenvalue f; of degree m there are
m mutually perpendicular and normalized eigenvectors |i,v), v =1,2,---,m, which
form an orthogonal base of the subspace corresponding to this eigenvalue.

A very useful property of Hermitian operators is:

Theorem 1.2.5 Hermitian operators can act on their eigenvectors either from the
left or from the right,

if F1 = F, then Fli) = fi|i), (|F = (|fi. (1.2.9)
Note that the last equation does not hold for non-Hermitian operators.

Exercise 1.2.1 Prove Eq. (1.2.9).

1.2.2 Orthogonal-normalization condition of eigenvectors

From Theorems 1.2.2, 1.2.4, we see that for any Hermitian operator a system of
mutually perpendicular and normalized eigenvectors can always be constructed. We
can relabel the eigenvectors as |i),i = 1,2,---. This set of eigenvectors satisfy the
following orthogonal-normalization condition

(t]7) = dij, (1.2.10)
where
0’ ) '?
§ij = { ) (1.2.11)
1, i=3

is the Kronecker delta-symbol.

The orthogonal-normalization condition (1.2.10) holds true for the microscopic
system moving in a finite volume V. Sometimes the volume V is so large, e.g. being
a macroscopic volume, then we can take it as infinite. In such case, the spectrum of
eigenvalues becomes continuous, and the eigenvalue equation reads

Flf) = fIf). (1.2.12)
and, correspondingly, the orthogonal-normalization condition becomes
(FLfTy =o(f = 1), (1.2.13)

where

0, f#/f,

6(f — f) =

=7 {oo, f=r, (1.2.14)
[ote=rrar =1

is the Dirac ¢ function.
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Some important formulae related to Dirac 4 function follow.

/ f(@)d(z — xo)dz = f(z0)- (1.2.15)
— 00
/ 1 /oo ik(z—=z')
_ = . 1.2.1
8z —x') o *Ooe dk ( 6)
1 € ) 1 1 1
o )—%am—i%ﬁ(m_i;zm)' (1.2.17)
lim ——— = P ¥ ind(w) (1.2.18)
Motie w ’ -

where P is the symbol of Cauchy principal value, which avoids the pole on the inte-
gration path along real axis symmetrically,

/_Z f(w)Pw—i—E dw = lim (/_a;Jr/f) wi%dw. (1.2.19)

Basing on Eq. (1.2.18) a technique of inserting an infinitesimal imaginary part
(+ie) in denomsnator to avoid the pole(s) on the integration path along real axis is
developed, which is very useful, in particular, in the quantum theory of scattering,
¢f. Chap 7 below. Let us prove this formula.

Proof. We have
1 w i€

wiis_w2+€2q:w2+€2'

When ¢ — 0 the second term is ind(w) and the first term, integrating with f(w),
yields

[e o]

The last integral vanishes because the integrand is an odd function of w. O

1.2.3 Aziom of quantum mechanics concerning physical quantities
Let us come back to the axiom of quantum mechanics concerning physical quantities.

Axiom II The physical quantities of a microscopic system are represented by Hermi-
tian self-conjugate operators (or Hermitian operators for short) in the corresponding
Hilbert space.

The full content of this axiom is as the following:

e The possible values of the results of any measurement on a physical quantity F
in a microscopic system are the eigenvalues of the operator F in this system.
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This is always true regardless the system is in what state. If the system is in
a state |a), then we expand |a) using the orthogonal-normalized eigenvectors of the
operator F

la) =) eild), (1.2.20)
if the spectrum is discrete, or

|a) = /Cf |f) df, (1.2.21)

in case the spectrum is continuous. A measurement on F in the state |a) is equivalent
to the measurement of F' in the eigenstates |i)’s or |f)’s of F' with different probabili-
ties, and the result obtained is the eigenvalues f;'s or f’s with different probabilities.

o The probability (or probability density) for a measurement of F' in the state
a to get the value f; (or f)is

PO — 2 or P =jes2. (1.2.22)

Using the orthogonal-normalization condition of eigenvectors (1.2.10), (1.2.13), it
is easy to show that

¢ = (ila), c5 = {fla). (1.2.23)
Exercise 1.2.2 Prove Eq. (1.2.23).

Exercise 1.2.3 Show that P{* and PSF) defined in Eq. (1.2.22) satisfy the require-
ment for probability, 4.e. are both positive definite and normalized to unity.

PO =1 or /p(f“)df_—:l_ (1.2.24)

Exercise 1.2.4 Derive Eq.(1.2.6), F(® = (a|F|a), from the axiom stated above.

Before measurement the state can be considered as a superposition of different
eigenstates i) (1 = 1,2,---), ¢f Eq.(1.2.20). After the measurement we get a definite
eigenvalue f; of F', which means that the state has been changed to the corresponding
eigenstate |7). This is the last part of Axiom II.

e If when measuring a quantity F in state |a) we get a certain eigenvalue f; of
F, then immediately after the measurement the state changes to the corre-
sponding eigenstate |i).

1.2.4 Completeness condition of eigenvector system

The possibility for any state vector |a) to be expanded by the eigenvector system )
or |f) is due to the completeness of this system. Substituting the two equations in
(1.2.23) into (1.2.20), (1.2.21), respectively, we get

la) = Z |i)(ila), (1.2.25)



