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Preface

This book gives an exposition of the fundamentals of the theory of linear
representations of finite and compact groups, as well as elements of the the-
ory of linear representations of Lie groups. As an application we derive the
Laplace spherical functions. The book is based on lectures that I delivered in
the framework of the experimental program at the Mathematics-Mechanics
Faculty of Moscow State University and at the Faculty of Professional Skill
Improvement. My aim has been to give as simple and detailed an account
as possible of the problems considered. The book therefore makes no claim
to completeness. Also, it can in no way give a representative picture of the
modern state of the field under study as does, for example, the monograph
of A. A. Kirillov [3].

For a more complete acquaintance with the theory of representations of finite
groups we recommend the book of C. W. Curtis and I. Reiner [2], and for
the theory of representations of Lie groups, that of M. A. Naimark [6].
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Introduction

The theory of linear representations of groups is one of the most widely ap-
plied branches of algebra. Practically every time that groups are encountered,
their linear representations play an important role. In the theory of groups
itself, linear representations are an irreplaceable source of examples and a
tool for investigating groups.

In the introduction we discuss some examples and en route we introduce a
number of notions of representation theory.

0. Basic Notions

0.1. The exponential function
t—e'* (teR)

is, for every fixed a € R, a homomorphism of the additive group R into the
multiplicative group R*. Are there any other homomorphisms f : R — R*?
Without attempting to answer this question ir full generality, we require that
the function f be differentiable. The condition that f be a homomorphism is

written:
ft+u)=f(t)f(u)
for all t,u € R. Differentiating with respect to u and putting u = 0 we get

f'@®) = f(t)a,
where a = f’(0). The general solution of this differential equation is f(t) =
Ce'e, but the condition that f be a homomorphism forces f(0) = 1, whence
C = 1. Thus, every differentiable group homomorphism of R into R* is an
ezponential function. This is one of the reasons why exponential functions
play such an important role in mathematics.

In solving systems of linear differential equations with constant coefficients
one encounters the matriz ezponential function

(1) tse4 (teR, A€L,(R)).
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Recall that it is defined as the sum of the series
— tk A*
k=0 k!
or, alternatively, as the solution of the matrix differential equation
(2) F'(t)=F(t)A (F:R— L,(R))
with initial condition F(0) = E. The exponential matrix function has the
property that
e(ttWA — gtAeud g1 allt,u € R,
i.e., it is a homomorphism of the group R into the group GL,(R). As
above, one can show that every differentiable group homomorphism of R into

GLA(R) has the form (1). This is a generalization of the preceding result,
since R* = GL;(R).

Example. It follows from the addition formulas for trigonometric functions
that

(3) (Cos(t'*'u) —Sin(t+u))=(cost —sint)(cosu —sinu>.

sin(t +u)  cos(t+ u) sint cost )\ sinu  cosu

This says that the map

cost —sint
(4) B hk (sint cost)

is a group homomorphism of R into GL2(R), and hence it has the form (1).

Here
ey [0 -1
A—F(O)—(1 0).

0.2. Let S, denote the symmetric group of degree n and let K be an arbitrary
field. To each permutation o € S,, we assign the matrix

(8) M(o) = E;q)n +--- + Eg(n)n
where E;; designates the matrix whose (i, j)-entry is the identity element of
the field K, while the remaining entries are zero.
We claim that for all 0,7 € S,,:
(6) M(oT) = M(o)M(1).
IEI'I fact, one readily verifies the following multiplication rule for the matrices
13
Bsfu={g* {17¢
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Using it we find that
M(o)M(7) = E,r1y vy Eriys + - - + Egr(n),r(n)Er(n)n
=Eor)1 +... + Egr(nyn = M(07),
as claimed.
We remark that the matrices M (o) are nonsingular. More precisely,
det M(0) =II(0)

where I1(g) = +1 denotes the parity of the permutation o. Equality (6) says
that M is a group homomorphism of S, into GL,(K).

0.3. Definition. A MATRIX REPRESENTATION of the group G over the field K
is a homomorphism

T:G — GLn(K)

of G into the group GL,(K) of nonsingular matrices of order n over K. The
number n is called the DIMENSION of the representation T'.

The word “representation” should suggest that once a matrix representation
is given, the elements of the group can be viewed as matrices or, in other
words, that there is an isomorphism of the given group with some group of
matrices. In the cases where the group G has a rather complicated structure,
it may very well turn out that such a representation is the only simple way of
describing G. For instance, the group GL,(K) is defined as a matrix group,
Le., the identity map Id: GL,(K) — GL,(K) is a matrix representation of
GL,(K).

We should, however, emphasize from the very beginning that in reality a ma-
trix representation does not always give an isomorphism between the group
G and a subgroup of GL,(K). The reason is that one and the same matrix
might correspond to distinct elements of G. To the reader familiar with the
general properties of homomorphisms it should be clear that this occurs if
and only if there are elements of G different from its identity element which
are mapped to the identity element of the group GL,(K), i.e., to the identity
matrix.

The set of all elements of G which are taken by T into the identity matrix
is a normal subgroup of G, called the KERNEL of the representation 7 and
denoted by KerT. For example, the kernel of the representation (4) of R
consists of all numbers 27k with k € Z.

If Ker T reduces to the identity element of G, the representation 7 is said to
be FAITHFUL. In this case G is isomorphic to the subgroup T(G) of GL,(K).
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The representation of the group S, constructed above in 0.2 provides an
example.

The other extreme case occurs when KerT = G, i.e., all elements of G are
taken by T into the identity matrix. Such a T is called a TRIVIAL represen-
tation.

0.4. We next discuss the geometric approach to the notion of representation.

Every matrix A of order n with entries in the field K defines a linear trans-
formation x — Az of the space K™ of column vectors. Moreover, this corre-
spondence between matrices and linear transformations is bijective and turns
the multiplication of matrices into the multiplication (composition) of linear
transformations. In particular, the group GL,(K) is canonically isomorphic
to the group GL(K™) of invertible linear transformations of the space K™.
Accordingly, every matrix representation of a group G can be regarded as a
group homomorphism of G into GL(K™).

Example. Let M be the matrix representation of the group S, constructed
above in 0.2. For each o € S,, the matrix M (o) can be regarded as a linear
transformation of K™. Let (e;,...,e,) be the standard basis of K™. Then

(7 M(o)e; = eo(;) for 1=1,...,n.

Since a linear operator is uniquely determined by its action on the basis
vectors, equations (7) may be taken as the definition of the representation M.

Replacing K™ by an arbitrary vector space V over the field K, we now arrive
at the following generalization of the notion of a matrix representation.

Definition. A LINEAR REPRESENTATION of the group G over the field K is
a homomorphism of G into the group GL(V) of all invertible linear trans-
formations (linear operators) of a vector space V over K. V is called the
REPRESENTATION SPACE, and its dimension is called the DIMENSION or the
DEGREE of the representation.

Suppose that the space V has a finite dimension n. Then with each linear
representation T of the group G in V' we can associate a class of n-dimensional
matrix representations. To this end we pick some basis (e) = (ey,...,en) of
V. Every operator T(g), for g € G, is described with respect to the basis (e)
by a matrix T'(g)(.), and the map Ty, : g — T'(g)(.) that arises in this manner
is a matrix representation of G. On choosing another basis (f) = (e)C (where
C is the transition matrix from (e) to (f)), we obtain another representation
T{s), related to T}, as follows:

T(5)(9) = C™ T (9)C.
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Definition. We say that two matrix representations 7} and T, are EQUIVA-
LENT (and write T) ~ T3) if they have the same dimension and there exists
a nonsingular matrix C such that

(8) Ty(9) = C™'Tu(9)C
for all g € G.

The foregoing discussion makes clear that to each finite-dimensional repre-
sentation there corresponds a class of equivalent matrix representations.

0.5. Definition. We say that two linear representations,
T1: G — GL(W;) and T2:G — GL(V,),

are ISOMORPHIC (or EQUIVALENT), and write T} ~ T3, if there exists an
isomorphism ¢: V3 — V3 such that

(9) oTi(g) = T2(g)o
for all g € G.

In other words, T} ~ T} if, upon identifying the spaces V; and V;, by means
of o, the representations T} and T, become identical. In particular, if V; and
V; are finite-dimensional, then in bases that correspond under o the matrices
of the operators T;(g) and T3(g) coincide for all g € G. This means that the
matrix representations associated with the linear representations T) and T»
are identical for a compatible choice of bases, and equivalent for an arbitrary
choice of bases.

Conversely, suppose that for some choice of bases of the spaces V; and Vs
the linear representations Tj and T, determine equivalent matrix representa-
tions. Then, for an appropriate choice of bases, T} and T, determine identical
matrix representations and hence are isomorphic.

Specifically, let the bases (e); and and (e); in Vi and V, be such that
T1(9)(e); = T2(g)(e), for all g € G. Then the isomorphism o: V; — V, which
takes (e); into (e), satisfies condition (9).

Thus, the matriz representations associated with the finite-dimensional lin-
ear representations T and Ty are equivalent if and only if T) and T, are
tsomorphic.

0.6. Halting here this somewhat unexciting yet necessary discussion, let us
see what benefits we can extract from it.

Recall that linear operators can be added, multiplied with one another, and
multiplied by numbers (elements of the ground field).
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In an arbitrary basis, to these operations there correspond the same opera-
tions on matrices; however, the definitions of the operations on linear opera-
tors are independent of the choice of a basis. Further, in a finite-dimensional
space over R or C, one can define the limit of a sequence of linear operators.
The act of passing to the limit is also compatible with the corresponding
action on matrices, but again does not depend on the choice of a basis.

Let V be a finite-dimensional vector space over K = R or C. The exponential
operator-valued function

t—e*  (teK, a€eL(V))

can be defined in the same manner as the matrix exponential function (see
0.1 above). It is a linear representation of the additive group K. The matrix
representation that corresponds to this representation in an arbitrary basis
is t — e'4, where A denotes the matrix of the operator « in that basis. Since
the choice of basis is at our disposal, we can attempt to make it so that A
will take the simplest possible form. For example, in the case K = C we
can arrange that A be in Jordan form. It is known that the Jordan form
is uniquely determined up to a permutation of the blocks. This implies, in
particular, that two linear representations,

t—e!*  and  te?,

are isomorphic if and only if the matrices of the operators a and f have the
same Jordan form.

This example illustrates the geometric approach to the notion of representa-
tion, which does not distinguish between equivalent matrix representations
and permits us, in certain cases, to avoid computations in coordinates.

0.7. In order to describe a linear representation, it is not obligatory to choose
a basis in the representation space. Alternatively, representations can be de-
scribed geometrically.

Examples.

1. We specify a linear representation of the group R as follows: to the ele-
ment ¢ € R we assign the rotation by angle ¢ in the Euclidean plane. From
geometric considerations it is obvious that the composition of the rotations
by the angles ¢ and u is the rotation by the angle ¢ + u, and hence that the
map thus constructed is indeed a linear representation. In an orthonormal
basis we have the corresponding matrix representation (4). Formula (3) now
follows automatically, and we can derive the addition formulas for trigono-
metric functions from it (and not conversely, as we did in 0.1).



0. Basic Notions 7

2. Let V denote the linear space of all polynomials with real coefficients. To
each t € R we assign a linear operator L(t) € GL(V) by the rule

(10)  (L®)f)(=) = f(z - 1)

It is readily checked that L(t) is indeed a linear operator and that L(t+u) =
L(t)L(u), i.e., L is a linear representation of the additive group R.

3. In the preceding example we can replace polynomials by any space of
functions which is invariant under translations. Here are some examples:

a) the space of continuous functions;
b) the space of polynomials of degree < n;

¢) the space of trigonometric polynomials, i.e., polynomials in cosz and
sinz;
d) the linear span of the functions cosz and sin z.
Let us examine in more detail the last case. Since

(11)

L(t)cosz = costcosz + sintsinz,

L(t)sinz = —sintcosz + costsinz,

the transformation L(t) takes any linear combination of cosz and sinz
again into such a linear combination. Formulas (11) show that in the ba-
sis (cos z,sinz) the operator L(t) is described by the matrix

cost —sint
sint cost )/’

Therefore, the representation L of the group R in the space (cosz,sinz) is
isomorphic to the representation constructed above geometrically.

0.8. Group theory is also concerned with more general “representations,”
called actions.

Let X be an arbitrary set and let S(X) denote the group of all bijections of
X onto itself. (If X = {1,2,...,n}, then S(X) = S,,).

Definition. An ACTION of the group G on X is a homomorphism s:G —
S(X).

In other words, the action s assigns to each g € G a bijective map s(g) of the
set X onto itself in such a manner that s(g,9,) = 5(g1)s(g2) forall g, g, € G.
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If it is clear to which action we are referring, we will simply write gz instead
of s(g)z. The last equality above signified “associativity”: (g192)z = g1(g22)
for every z € X.

We may regard a linear representation as a special kind of action. As a
nonlinear example we give the action of R on itself defined by the rule
s(t)x=z+1t.
This last example can be generalized as follows. Let G be a group. Then G
acts on itself by left translations,
(12)  l(g)z =gz,
as well as by right translations,
(13) r(g)r = g™l
Let us check that, say, formula (13) determines an action:

r(9192)z = 2(9192) ™" = 295 97",
and

r(91)r(g2)z = r(91)(zg5 ') = zg5 97"
(The proof explains why g appears in (13) with the exponent —1.)

0.9. With each action we can associate a linear representation in a function
space.

Let K be a field and K[X] the vector space of all K-valued functions on the
set X. Each o € S(X) defines a linear transformation o, in K[X]:

(14)  (ouf)@)=f(c7'2)  (f € K[X]).

We have (07), = 0,7y, i.e., (14) defines a linear representation of the group
S(X). In fact,

((en)xf)(@) = f((o7) 7 x) = f(r7 0™ ),
and

(x4 f)(z) = (T*f)(a—lx) = f("'—lo'—lx)-

In an analogous manner we can define a linear representation of the group
S(X) in a space of functions of several variables:

@uf) @111 33) = flo™ 2y, 07 2,).

Now suppose we are given an action s: G — S(X). We define a linear repre-
sentation s, of the group G in the space K[X], setting
sx(9) = 5(9)x.

Representations of G in spaces of functions of several variables are defined
similarly.
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Examples.

1. Consider the group G of rotations of a cube (isomorphic, as is known,
to S;) and its natural action s on the set X of faces of the cube. Here the
space K[X] is six-dimensional. As a basis of K[X] we can take the functions
f1s---» f» €ach of which is equal to 1 on one of the faces and to 0 on the
others. Relative to this basis the operators s,(g) are written as matrices of
0’s and 1’s such that in every row and every column there is exactly one 1.
For example, let g be the rotation by 27/3 around an axis passing through
the center of the cube and one of its vertices. Then for a suitable labeling of

the basis functions f,,..., fs, the operator s,(g) is given by the matrix
0 01 00O
100 000
01 0 0 00O
0 00 0 0 1
0 00100
0 00 010

2. Let s be the natural action of the group S, on the set {1,2,...,n}. Then
the representation s, is isomorphic to the representation M constructed
above in 0.2 (see also the example in 0.4).

In general, if X is a finite set, then the space K[X] is finite-dimensional and
its dimension is equal to the number of elements of X. The functions §,,
z € X, defined as

_J1 ify=g,
) aw={y {132
form a basis of K[X]. The operators s,(g), ¢ € G, simply permute the ele-
ments of this basis. Specifically,

(16) s*(g)6z = 69::‘
In fact,
(u@8.)0) = 8.l67) = {§ §UZ 5

In those cases of interest where the set X is infinite, it usually possesses an
additional structure (for example, it is a topological space or a differentiable
manifold), and the given group action is compatible with that structure.
Then one considers only functions that are “nice” in one sense or another
(for example, continuous or differentiable), rather than arbitrary functions
on X. For instance, in the case of the action s of the group R on itself
by translations, we can take the space of polynomials for the representation

space of s,. We thus get the linear representation of R considered above in
Example 2, 0.7.
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Definition. The linear representation l, = L of an arbitrary group G (in a
suitable class of functions on G) associated with the action [ of G on itself
by left translations is called the LEFT REGULAR REPRESENTATION of G.

According to this definition

an (L)) =flg™'z) (9,2 €G).
The RIGHT REGULAR REPRESENTATION is defined in a similar manner. Need-
less to say, the class of functions in question must be specified exactly.

As we shall see, the study of regular representations is the key step towards
the description of all representations of a given group.

0.10. Methods of producing new representations from one or several given
ones play an important role in the theory of linear representations. One of
the simplest of these methods is the composition of a representation and a
homomorphism.

Let T: G — GL(V) be a linear representation of the group G, and let ¢: H —
G be a homomorphism. Then T'o ¢ is a linear representation of the group H.

Let us examine two particular cases of this construction. If H is a subgroup of
G and ¢ is the inclusion map of H into G, then T o ¢ is simply the restriction
of the representation T to H. We denote the restriction operation by Resg.
According to the definition,

(Res§ T)(h) =T(h)  for h € H.
If now ¢ is an automorphism of G, then T o ¢ is, like T, a representation of

G. Such a “twisted” representation can be isomorphic or not to the original
representation T.

Examples.

1. Let ¢ = a(h) be the inner automorphism defined by h € G, i.e., a(h)g =
hgh~!. Then for every g € G

(T o a(h))(9) = T(hgh™") = T(h)T(g)T(h)™*
or, equivalently,
(18) (T oa(h))(9)T(h) = T(R)T(g).
Since T(h) is an isomorphism of the vector space V onto itself, equality (18)
shows that T'oa(H) ~ T.

2. Let ¢ be the automorphism of the group C acting as ¢(z) = —z. Let V be
a finite-dimensional complex vector space. The map F,:t — e'* is a linear
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representation of C for every o € L(V) (see 0.6). Obviously, F,0¢ = F__.
The representations F, and F__ are isomorphic if and only if the matrices
of the operators a and —a have the same Jordan form. (The latter in turn
holds if and only if for any k and c in the Jordan form of the matrix of a, the
number of Jordan blocks of order k with eigenvalue c is equal to the number
of Jordan blocks of order k with eigenvalue —c).

Questions and Exercises

1.* Show that dete” = ‘T4 for any matrix 4 € L_(R).

2. If F is as given below, show that F' is a matrix representation of R and
find a matrix A4 such that F(t) = et4:

cosht —sinht
a) F(t)= ( sinht cosht ) !

b)  F(t) = ((1) :)

3. What is a one-dimensional matrix representation?

4. Let M be the matrix representation of the group S, constructed in 0.2.
Show that tr M (o) is the number of fixed points of the permutation o.

5. How many trivial matrix representations does an arbitrary group admit?

6. Show, without resorting to calculations, that e°~ 4C = C~1eAC for any
matrices A € L, (R) and C € GL_(R).

7. Let S: R — S(V) be one of the maps listed below, where V is the space
of all polynomials with real coefficients and t € R, f € V:

a) (S@)f)(=z) = f(tz);

b) (S()f)(=z) = f(e'z);

c) (S(t)f)(z) = e'f(z);

d) (S@®)f)(z) = f(z) +¢
e) (S(t)f)(z) =e' f(z +1).

Is S a linear representation?
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8. Describe one of the equivalent matrix representations associated with the
linear representation S: R — GL(V'), where V is the space of polynomials of
degree < 3 and (S(t)f)(z) = f(zx—t)fort e R, f € V.

9. Find all finite-dimensional linear representations of
a) Z;
b) Z,,.

10.* Find all differentiable finite-dimensional complex linear representations
of

a) G =R* (the multiplicative group of positive reals);
b) G=T={z€C* |z|]=1}.

11. Let s be an action of the group G on a set X and e the identity element
of G. Show that s(e) is the identity map of X.

12. Le¢e R=RU {oo}. For any matrix 4 = (Z’ 2) € GL,(R) put
s =2%0 (),
cz+d
with the convention that
a-00+b a U
croomd ¢ P TP

for u # 0. Show that s is an action of GL,(R) on R.

13. Write down an explicit formula for the right regular representation of the
group G.

14.* Prove that the left regular representation of any group G is isomorphic
to its right regular representation.

15. Show that every group admits a faithful linear representation.

16. Is every finite-dimensional complex representation of Z obtained by re-
stricting a representation of C to Z?

17. Let ¢ denote the automorphism of the group Z,, defined by the rule
¢(z) = —z. Find all complex finite-dimensional representations T' of Z,,
with the property that T o ¢ ~ T.



