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Preface

“2007 International Conference in Geometric Analysis” was held in Taiwan
University ﬁo&p June 18th to 22nd, 2007. This conference is sponsored by Math-
ematics D1V1s;Qn Center for Theoretical Sciences (NCTS) Taipei Ofﬁce, Taida
Institute for Mathematical Sciences (TIMS), Academia Sinica, Central University
and Tsing-Hua University (Xinzu). '

Geometric analysis Studies functions, maps, tensors, and submanifolds gov-
erned by natural differential equations. A good understanding of these objects re-
veals important information of analytical and geometric structures, and has many
implications in physics, algebraic geometry and topology.

In recent years, we have witnessed a great success of geometric analysis, the
most important event being the solution of the Poincare conjecture by the Ricci
flow. This shows the power (Sf geometric partial differential equations in resolving
some deepest problems in topology.

The aim of “2007 Internatlonal Conference in Geometric Analysis” is to gather
leading experts tc‘> dlSCuS&' and exchange new progress and ideas on various top-
ics in the field. This proceedmg is an account on recent advances in geometric
analysis and related equations, including Ricci flow, affine normal flow, geometric
analysis on pseudoconvex hypersurfaces, Alexandrov space, manifolds with special
holonomy, and singular plateau problem.

We would like to take this opportunity to thank Prof. Shing-Tung Yau for
the support of publishing this proceeding. We also want to thanks all the authors

for contributing this proceeding.

Yng-Ing Lee
Chang-Shou Lin
Mao-Pei Tsui
April 2009
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Regent Progress on Ricci Solitons!

% Huai-Dong Cao*

Abstract

In recent years, there has seen much interest and increased research activities in
Ricci solitons. Ricci solitons are natural generalizations of Einstein metrics. They
are also special solutions to Hamilton’s Ricci flow and play important roles in the
singularity study of the Ricci flow. In this paper, we survey some of the recent
progress on Ricci solitons.

2000 Mathematics Subject Classification: 53C21, 53C25.

Keywords and Phrases: Ricci soliton, singularity of Ricci flow, stability, Gaus-
sian density.

The concept of Riccisolitons was introduced by Hamilton [65] in mid 80’s. They
are natural genéraliza,tiéns of Einstein metrics. Ricci solitons also correspond
to self-similar solutions of Hamilton’s Ricci flow [63] and often arise as limits of
dilations of singularities in the Ricci flow [67, 11, 26, 92]. They can be viewed as
fixed points of the Ricci.flow, as a dynamical system, on the space of Riemannian
metrics modulo diffeomorphisms and scalings. Ricci solitons are of interests to
physicists as well and are called quasi-Finstein metrics in physics literature (see,

, [51]). In this paper, we survey some of the recent progress on Ricci solitons
as well as the role they play in the singularity study of the Ricci flow. This paper
can be regarded as an update of the article [14] written by the author a few years
ago.

1 Ricci solitons

11 Ricci solitons

Recall that a Riemannian metric g;; is Einstein if its Ricci tensor R;; = pg;j for
some constant p. A smooth n-dimensional manifold M™ with an Einstein metric

t Research partially supported by NSF grants DMS-0354621 and DMS-0506084.
* Department of Mathematics, Lehigh University, Bethlehem, PA 18015, Email:
huc2@lehigh.edu



2 Huai-Dong Cao

g is an Einstein manifold. Ricci solitons, introduced by Hamilton [65], are natural
generalizations of Einstein metrics.

Definition 1.1. A complete Riemannian metric g;; on a smooth manifold M™ is
called a Ricci soliton if there exists a smooth vector field V' = (V*) such that the
Ricci tensor R;; of the metric g;; satisfies the equation

1
R;; + E(V,'Vj + V;Vi) = pgij, (L.1)

for some constant p. Moreover, if V is a gradient vector field, then we have a
gradient Ricci soliton, satisfying the equation

Rij + ViV;f = pgij, (1.2)

for some smooth function f on M. For p = 0 the Ricci soliton is steady, for p > 0 it
is shrinking and for p < 0 expanding. The function f is called a potential function
of the Ricci soliton.

Since V;Vj; 4+ V;V; is the Lie derivative Ly g;; of the metric g in the direction
of V, we also write the Ricci soliton equations (1.1) argg‘,‘(lﬂ) as
el

1 PO
Re+ ~2—ng =pg and Rec+ V%f= pg (1.3)

réspectively. .
When the underlying manifold is a complex manifold, we have the corre-
sponding notion of Kéhler-Ricci solitons. ‘

Definition 1.2. A complete Kahler metric g,5 on a complex manifold X™ of
complex dimension n is called a Kdhler-Ricci soliton if there exists a holomorphic
vector field V = (V*) on X such that the Ricci tensor R,z of the metric g,z
satisfies the equation

1
R.3+ E(VEVQ + VaV3) = pg,5 (1.4)

for some (real) constant p. It is called a gradient Kihler-Ricci soliton if the holo-

morphic vector field V comes from the gradient vector field of a rea‘kvalued function

f on X™ so that Y
’ ';b ™

Ro5 +VaoVaf =pgap, and V,Vgf=0. (1.5)

Again, for p = 0 the soliton is steady, for p > 0 it is shrinking and for p < 0
expanding.

Note that the case V = 0 (i.e., f being a constant function) is an Einstein
(or Kahler-Einstein) metric. Thus Ricci solitons are natural extensions of Einstein
metrics. In fact, we will see below that there are no non-Einstein compact steady
or expanding Ricci solitons. Also, by a suitable scale of the metric g, we can
normalize p = 0,+1/2, or —1/2.
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Lemma 1.1. (Hamilton [68]) Let g;; be a complete gradient Ricci soliton with
potential function f. Then we have
R+|Vf2—2pf=C (1.6)

for some constant C. Here R denotes the scalar curvature.

Proof. Let g;; be a complete gradient Ricci soliton on a manifold M™ so that there
exists a potential function f such that the soliton equation (1.2) holds. Taking the
covariant deriyatives and using the commutating formula for covariant derivatives,
we obtain Y}

) ViRjk — V;jRix + RijiuVif = 0.
Taking the trace on j and k, and using the contracted second Bianchi identity

1
ViRi; = 5 ViR,

we get
V:R =2R;;V,f. (L7)
Thus
Vi(R+|VF* = 2pf) = 2(Ri; + ViV;f — pgi)V;f = 0.
Therefore
R+|VfP-2of=C
for some constant C. , O

Proposition 1.1. (cf. Hamilton [68], Ivey [71]) On a compact manifold'M™,
a gradient steady or egpanding Ricci soliton is necessarily an Einstein metric.

Proof. Taking thie traggm Equation (1.2), we get
R+ Af =mnp. (1.8)
Taking the difference of (1.6) in Lemma 1.1 and (1.8), we get
Af —|Vf2+2pf =np—-C.
When M is compact and p < 0, it follows from the maximum principle that f
must be a constant and hence g;; is a Einstein metric. O

More generally, we have

Proposition 1.2. Any compact steady or expanding Ricci soliton must be Ein-
stein.

Proof. This follows from Proposition 1.1 and Perelman’s results that any compact
Ricd soliton is necessarily a gradient soliton (see Propositions 2.1 ~ 2.4). O
For compact shrinking Ricci solitons in low dimensions, we have

Proposition 1.3. (Hamiton [65]' for n = 2, Ivey [71])? for n = 3) In di-
mension n < 3, there are no compact shrinking Ricci solitons other than those of
constant positive curvature.

1See alternative proofs in (Proposition 5.21, [32]) or (Proposition 5.1.10, [18]), and [31].
2See [45] for alternative proofs
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1.2 Examples of Ricci solitons

When n > 4, there exist nontrivial compact gradient shrinking solitons. Also,
there exist complete noncompact Ricci solitons (steady, shrinking and expanding)
that are not Einstein. Below we list a number of such examples. It turns out
most of the examples are rotationally symmetric and gradient, and all the known
examples of nontrivial shrinking solitons so far are Kéhler.

Example 1.1. (Compact gradient Kihler shrinkers) For real dimension 4,
the first example of a compact shrinking soliton was constructed in early 90’s
by Koiso [73] and the author [11]* on compact complex surface CP*#(—CP?),
where (—CP?) denotes the complex projective space with the opposite orientation.
This is a gradient Kahler-Ricci soliton, has U(2) symmetry and positive Ricci
curvature. More generally, they found U(n)-invariant Kahler-Ricci solitons on
twisted projective line bundle over CP™? for all n > 2.

Remark 1.1. If a compact Kéahler manifold M admits a non-trivial K&hler shrinker
then M is Fano (i.e., the first Chern class ¢; (M) of M is positive), and the Futaki-
invariant [52] is nonzero.

Example 1.2. (Compact toric gradient Kiahler shrinkers) In [97), Wang-
Zhu found a gradient Kéhler-Ricci soliton on CP?#2{-CP?) which has U(1)xU(1)
symmetry. More generally, they proved the existencé’of gradient Kéhler-Ricci
solitons on all Fano toric varieties of complex dimension n > 2 with non-vanishing
Futaki invariant.

Example 1.3. (Noncompact gradient Kihler shrinkers) Feldman-Ilmanen-
Knopf (48] found the first complete noncompact U(n)-invariant shrinking gradient
Kahler-Ricci solitons, which are cone-like at infinity and have quadratic decay in
the curvature. It has positive scalar curvature but the Ricci curvature doesn't
have a fixed sign.

Example 1.4. (The cigar soliton) In dimension two, Hamilton [65] discovered
the first example of a complete noncompact steady soliton on R?, called the cigar
soliton, where the metric is given by

ds? — dz? + dy?
1+ 42

%,
with potential function TR

f=—log(1+z%*+ y2).

The cigar has positive (Gaussian) curvature and linear volume growth, and is
asymptotic to a cylinder of finite circumference at oc.

Example 1.5. (The Bryant soliton) In the Riemannian case, higher dimen-
sional examples of noncompact gradient steady solitons were found by Robert
Bryant [6] on R™ (n > 3). They are rotationally symmetric and have positive

3The author’s construction was carried out in 1991 at Columbia University. When he told his
construction to S. Bando that year in New York, he also learned the work of Koiso from Bando.
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sectional curvature. Furthermore, the geodesic sphere S”~1 of radius s has the
diameter on the order 1/s. Thus the volume of geodesic balls B,(0) grow on the
order of r("+1)/2,

Example 1.6. (Noncompact gradient steady Kéhler solitons) In the Kahler
case, the author [11] found two examples of complete rotationally noncompact
gradient steady Kéahler-Ricci solitons

(a) On C™ (for n = 1 it is just the cigar soliton). These examples are U(n)
invariant ,@ng have positive sectional curvature. It is interesting to point out that
the geodesi¢isphere S§%n=1 of radius s is an S'-bundle over CP"! where the
diameter of 6! is on the order 1, while the diameter of CP™ ! is on the order -
/5. Thus the volume of geodesic balls B,(0) grow on the order of r™, n being the
complex dimension. Also, the curvature R(z) decays like 1/r. '

(b) On the blow-up of C™/Z, at the origin. This is the same space on which
Eguchi-Hansen [44] (n = 2) and Calabi [9] (n > 2) constructed examples of Hyper-
Kallﬂer metrics. For n = 2, the underlying space is the canonical line bundle over
CP-.

Example 1.7. (Noncompact gradient expanding Kahler solitons) In [12],
the author constructed a one-parameter family of complete noncompact expanding
solitons on C™. These expanding Ké&hker-Ricci solitons all have U(n) symmetry
and positive sectional curvature, and are cone-like at infinity.

More examples of complete noncompact Kahler-Ricci expanding solitons were
found by Feldman-Iimanen-Knopf [48] on “blow-ups” of C*/Z, k = n+1,n+2,. . ..

(See also Pedersen et al [84].)

Example 1.8. ’(Sol’?nd Nil solitons) Non-gradient expanding Ricci solitons on
Sol and Nil manifolds were constructed by J. Lauret [75] and Baird-Laurent [2].

Example 1.9. (Warped products) Using doubly warped product and multiple
warped product constructions, Ivey [72] and Dancer-Wang [41] produced noncom-
pact gradient steady solitons, which generalize the construction of Bryant’s soliton.
Also, Gastel-Kronz [56] produced a two-parameter family (doubly warped product
metrics) of gradient expanding solitons on R™*! x N, where N* (n > 2) is an
Einstein manifold with positive scalar curvature.

Example 1.10. Very recently, Dancer-Wang [40] produced new examples of gra-
dient shrinking, steady and expanding Ké&hler solitons on bundles over the product
of Fano Kahler-Einstein manifolds, generalizing those in Example 1.1, 1.3, 1.6, 1.7
and those by Pedersen et al [84].

// We conclude our examples with

Example 1.11. (Gaussian solitons) (R", go) with the flat Euclidean metric can
be also equipped with both shrinking and expanding gradient Ricci solitons, called
the Gaussian shrinker or expander.

(a) (R", go, |z|?/4) is a gradient shrinker with potential function f = |x|?/4:

1
Rec+ sz = 590'
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l |2(/b) (R™, go, —|z|%/4) is a gradient expander with potential function f =
—|x|*/4:

1
Rc + sz = ‘—igo.

Remark 1.2. We'll see later that the Gaussian shrinker is very special because it
has the largest reduced volume V =1 (see Section 4.2) '

2 Variational structures

In this section we describe Perelman’s F-functional and W-functional and the as-
sociated A-energy and v-energy respectively. The critical points of the A-energy
(respectively v-energy) are precisely given by compact gradient steady (respec-
tively shrinking) solitons. We also consider the W_-functional and the corre-
sponding v_-energy introduced by Feldman-Ilmanen-Ni [49] whose critical points
are expanding solitons. Throughout this section we assume that M™ is a compact
smooth manifold. ’

2.1 The F-functional and M-energy

In [85] Perelman considered the functional R
: | Flo )= [ (R [91P)av

defined on the space of Riemannian metrics and smooth functions on M. Here R
is the scalar curvature and f is a smooth function on M™. Note that when f = 0,
F' is simply the total scalar curvature of g, or the Einstein-Hilbert action on the
space of Riemannian metrics on M.

Lemma 2.1. (First variation formula of F-functional, Perelman [85]) If
89i; = vij and 8f = ¢ are variations of g;; and f respectively, then the first
variation of F is given by

(i b) = g v 2 -f

6F (vig, 8) = /M v (B + Vi3 f) + (5 — 0) QAS — VS + B)| e~ /av

Y

where v = gv;;. SN
¥t

Next we consider the associated energy
A(gij) = inf {.F(gij,f) :fe C'°°(M),/ e fdv = 1} .
M

Clearly A(gs;) is invariant under diffeomorphisms. If we set u = e~/2, then the
functional F can be expressed as

F = / (Ru? + 4|Vu|?)dV.
M
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‘Thus
A(gij) = inf {/ (Ru? + 4|Vu|?)dV : / uldV = 1},
M M

the first eigenvalue of the operator —4A + R. Let ug > 0 be a first eigenfunction
of the operator —4A + R so that

—4Aug + Rug = /\(gij)uo.
2k
Then fy = i}%lpg ug is a minimizer of A(g;;):
Mgiz) = F (945 fo)-
Note that f; satisfies the equation
—2Afo + |Vf()|2 —R= /\(g,;j). (2.1) ;

For any symmetric 2-tensor £ = h;, consider the variation g;;(s) = gi;+shi;.
It is an easy consequence of Lemma 2.1 and Eq. (2.1) that the first variation
DyA(h) of M(gij) is given by

d

ds|._, Angj(s)) = / —hij(Rij + ViV f)e ™ dV, (2.2)

where f is a minimizér of A(g;;). In particular, the critical points of A are precisely
steady gradient Ricci gplitons.

Note that, by diffeomorphism invariance of A, DgA vanishes on any Lie
derivative h;; = %ngij, and hence on V,;V;f = %vagij‘ Thus, by inserting
h = —2(Ric+V?f) in Eq. (2.2) one recovers the following result of Perelman [85].

Proposition 2.1. Suppose g;;(t) is a solution to the Ricci flow on a compact
manifold M™. Then A(g;;(t)) is nondecreasing in t and the monotonicity is strict
unless we are on a steady gradient soliton. In particular, a (compact) steady Ricci
soliton is necessarily a gradient soliton.

We remark that by considering the quantity
T 2
A(gi;) = Agi;)(Vol(gi;)) ™,

which is a scale invariant version of A(g;;), Perelman [85] also showed the following
result.

Proposition 2.2. ;\(gij) is nondecreasing along the Ricci flow whenever it is
nonpositive; moreover, the monotonicity is strict unless we are on a gradient ex-
panding soliton. In particular, any (compact) expanding Ricci soliton is necessarily
a gradient soliton.
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2.2 The W-functional and v-energy

In order to study shrinking Ricci solitons, Perelman [85] introduced the W-
functional

Wigij, f,7) = /M[T(R +VFR) + f - n)(dnr)-Fefav,

where g¢;; is a Riemannian metric, f a smooth function on M™, and 7 a posi-
tive scale parameter. Clearly the functional W is invariant under simultaneous
scaling of 7 and gi; (or equivalently the parabolic scaling), and invariant under
diffeomorphism. Namely, for any positive number a and any diffeomorphism ¢ we
have

W(ayp* gij, ¢* f,ar) = W(gij, f, 7)-

Lemma 2.2. (First variation of W-functional, Perelman (85]) If vij =
8gij, ¢ =0f, andn = o7, then

1 - n
(5W(’U¢j,¢, ’I’]) = / —TVij (Rij + Vifvj'f - —2;g,~j> (47TT)_7e_de
M

o[, (G0 g R 280 94D

o
A

+f—n—1@4nr)"Fefav T
2_ 1 i
+ /Mn (R + |V 27) (4rnr)" e~ 14V

Here v = g"v;; as before.

Similar to the A-energy, we can consider
w(gij,7) = inf(W(gy;, f,7) : f € C°°(M),(47r'r)—% /M e fdv =1}. (2.3)
Note that if we let u = e~f/2, then the functional W can be expressed as
Wigij» f,7) = /M [r(Ru? + 4|Vul?]) — u? logu® — nu?|(4r7)~ % dV,

and the constraint [, (477)~%e~/dV = 1 becomes [, u2(4n7)~"3dV = 1. There-
fore p(gi;, 7) corresponds to the best constant of a logarithmic S¢olev inequality.

Since the nonquadratic term is subcritical (in view of Sobabem exponent), it
is rather straightforward to show that p(gij, 7) is achieved by some nonnegative
function v € H'(M) which satisfies the Euler-Lagrange equation

7(—4Au + Ru) — 2ulogu — nu = p(gij, 7)u. (2.4)

One can further show that the minimizer u is positive and smooth (see Rothaus
[89]). This is equivalent to say that u(g;,7) is achieved by some minimizer f
satisfying the nonlinear equation

TAf — VI +R) + f —n = plgis, 7)- (2.5)
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Proposition 2.3. (Perelman [85]) Suppose g;;(t), 0 < t < T is a solution to the
Ricci flow on a compact manifold M™. Then p(g:;(t), T — t) is nondecreasing in
t; moveover, the monotonicity is strict unless we are on a shrinking gradient soli-
ton. In particular, any (compact) shrinking Ricci soliton is necessarily a gradient
soliton.

Remark 2.1. Recently, Naber [78] has shown that if (M™,g) is a complete non-
compact shrinking Ricci soliton with bounded curvature |Rm| < C with respect
to some smooth vector field V, then there exists a smooth function f on M such
that (M™, gm)‘as a gradient soliton with f as a potential function. This in partlcular
means that t’* Vf + X for some Killing field X on M.

The associated v-energy is defined by
v(gi;) = inf {W(g,f, 7): f e C®(M),7>0,(4nT)" 2 /e—fdv = 1} .
One checks that v(g;;) is realized by a pair (f,7) that solve the equations
7(~20f +[Df? —R)— f+n+v=0, (4nr)"% /fe‘f =T te (26)

Consider variations g;;(s) = gi; + shi; as before. Using Lemma 2.2 and (2.6),
one calculates the first variation Dgv(h) to be

d

E (gm( s)) = (47”')_%/ i{T(Rij + ViV f) — _ng] ~fav.

A stationary pomt of v t}lus satisfies
1
Rij +ViVif — 5-9i; =0,
which says that g;; is a gradient shrinking Ricci soliton.
As before, Dgv(h) vanishes on Lie derivatives. By scale invariance it also
vanishes on multiplies of the metric. Inserting h;; = —2(Ri; + ViV, f — %gij),

one recovers Perelman’s formula that finds that v(g;;(t)) is monotone on a Ricci
flow, and constant if and only if g;;(t) is a gradient shrinking Ricci soliton.

2.3 The W_-functional and v_-energy

In [49], Feldman-Ilmanen-Ni introduced the dual W_-functional (corresponding to
exp?vnders)

W_(gi5, f,0) = /M[U(R+ IVF?) = (f — n))(4no) " 2e 1 dV,

the p_-energy

ol ) = int {W-gs, £,7) s £ € C=(), o) [ eTav = 1},
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and the corresponding v_-entropy
v—(g:) = S\i%{{i—(gz‘j,a)}-

Here, o is a positive parameter. They proved that

Proposition 2.4. (Feldman-Ilmanen-Ni [49])

(a) u_(gij,0) is achieved by a unique f; u_(gi;(t),t — to) is nondecreasing
under the Ricci flow; moveover, the monotonicity is strict unless we are on an
ezpanding gradient soliton.

(b) If A(g) < 0, then v_(gi;) is achieved by a unique o5 v_(gi;(t)) is nonde-
creasing under the Ricci flow, and is constant only on an expanding soliton.

Furthermore, if A(g) < O then v_ is achieved by a unique pair (f,o) that
solve the equations

o(~2Af + |Df2—R) + f —n+v_ =0, (47f¢)——z—/fe—f:g_u__

3 Ricci solitons and Ricci flow;™ |

k¥ *

3.1 Ricci solitons as self-similar solutions of the Ricci flow

Let us first examine how Einstein metrics behave under Hamilton’s Ricci flow

9gi;(t)
50 2R;;(t).

If the initial metric is Ricci flat, so that R;; = 0 at t = 0, then clearly the
metric does not change under the Ricci flow: g;;(t) = g:;(0). Hence any Ricci flat
metric is a stationary solution. This happens, for example, on a flat torus or on
any K 3-surface with a Calabi-Yau metric.

If the initial metric g;;(0) is Einstein with positive scalar curvature, then the
metric will shrink under the Ricci flow by a time-dependent factor. Indeed, if at
t = 0 we have

R;;(0) = %%(O) ¥,
Then RS
9:5(t) = (1 —)gi;(0), (3.1)
which shrinks homothetically to a point as t — T = 1, while the scalar curvature

R — oo like 1/(T —t) as t — T. Note that g(t) exists for t € (—o0,T'), hence an
ancient solution.

By contrast, if the initial metric is an Einstein metric of negative scalar
curvature, the metric will expand homothetically for all times. Suppose

R;;(0) = —%gij (0)
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at t = 0. Then the solution to the Ricci flow is given by

9i5(t) = (1 +)9i;(0).

Hence the evolving metric g;;(t) exists and expands homothetically for all time,
and the curvature will fall back to zero like —1/t. Note that now the evolving
metric g;;(¢) only goes back in time to —1, when the metric explodes out of a
single point in a “big bang”.

Now suppose we have a one-parameter group of diffeomorphisms ¢;, —o0 <
t < oo, Wh’%fl\ls generated by some vector field V on M, and suppose g;;(t) = ¢} g”
is a slution #6 the Ricci flow, called a self-similar slutzon with initial metric §;;.
Then

—2Rc=Lvg

for all t. In particular, the initial metric g;;(0) = §;; satisfies the steady Ricci
soliton equation in (1.3).
Conversely, suppose we have a steady Ricci soliton § = (§;;) on a smooth-
manifold M™ so that R
2Rc+ Lvg =0,

for some smooth vector field V = (V). Assume the vector field V is complete (i.e.,
V generates a one-parameter group of diffeomorphisms ¢; of M). Then clearly

gw() ©t Gij — 00 <t < o0,

is a self-similar solution of the Ricci flow with §;; as the initial metric.

More generally, we can consider self-similar solutions to the Ricci low which
move by dlffeomg)rphlsms -and also shrinks or expands by a (time-dependent) factor
at the same time. Streh self-similar solutions correspond to either shrinking or
expanding Ricci solitons (M, g, V) with the vector filed V being complete. For
example, a shrinking gradient Ricci soliton satisfying the equation

R”—i—VV f 2gn—O,

with V = Vf complete, corresponds to the self-similar Ricci flow solution g;;(t)
of the form
9i(t) = (L = t)pi(g55),  t<1, (3.2)

where ¢; are the diffeomorphisms generated by V/(1 —t). (Compare Eq. (3.2)
with Eq. (3.1) for p =1/2.)

Thus, we see a complete gradient Ricci soliton with respect to some complete
vecjor field corresponds to the self-similar solution of the Ricci flow it generates.
For this reason we often do not distinguish the two.

Remark 3.1. If M™ is compact, then V is always complete. But if M is noncompact
then V may not be complete in general. Recently Z.-H. Zhang [102] has observed
that for any complete gradient (steady, shrinking, or expanding) Ricci soliton
gijwith potential function f, V = Vf is a complete vector field on M.

In particular, a complete gradient Ricci soliton always corresponds to the
self-similar solution of the Ricci flow it generates



