PEARSON

2 3 N

HREMSRIED

= = #ﬁ‘

(SR3hR - SB2hR)

Data Structures
and
coir10s hAlgorithm Analysis in C

Mark Allen Weiss
REEHERAE =

e

LB T b B ORR A

China Machine Press

SR - FB2hR)

(

English reprint edition copyright © 2010 by Pearson Education Asia Limited
and China Machine Press.

Original English language title: Data Structures and Algorithm Analysis in C,
Second Edition (ISBN 978-0-201-49840-0) by Mark Allen Weiss, Copyright © 1997.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A F5# 3 B2 EI AR i Pearson Education Asia Ltd 32 AUHLAL Tl HAR SR H
M. REHREPELET, ARUEMFRAEHISPEELBNA.

RFHEARLIEEN (FREFEEFE, BIIFEINTREAPEE
BHX) HERIT.

7354} Nk 4 Pearson Education (3F4#EHMER) BLPihir%E, T
FREEABHE.

IR TR AR A AR
MR, @R
FHEEME ALRTREBHESR

ABIENEIDE. EF. 01-2010-4175

BHEMSRE (CIP) HiE

BB ERESN: CIESHR (XK - #2R) / (F) FHlF (Weiss,
M.A) ZF —dbst: Pl TkHiRit, 2010.7

(275)

354, JR 3¢ : Data Structures and Algorithm Analysis in C, Second Edition

ISBN 978-7-111-31280-2

1. % 0.%- 0. OI|EH-EX ORESIT-XX OCIEE-#
Fikit-%x V. OTP311.12 @TP312

ERAEBECIPEEZF (2010) F131749%5

HL T HRRAE (e himisRK B 5 IEA#22S #RE4RFD 100037)
HERE. FRA

AL T EIMEN 55 77 FR 2> R EN R

201048 A 58 1R 5 1 2R EN Al

150mm % 214mm -+ 16.5F17k

FrAEd5-2 . ISBN 978-7-111-31280-2

Efr: 45.005¢

JLASS, wmAfkm. AN, R, Atk TEiER
ARk . (010) 88378991, 88361066

Wy hek. (010) 68326294, 88379649, 68995259
BiEthik. (010) 88379604

EEER: hzjsj@hzbook.com

&W%%ﬁ

== ‘”‘?"*«.

XEE MU, FER-KOEEE MRS R ERE,
7 EKIE A AFHEN & A SIS T 2W RS WIERX AL
%, FEEEEEERARBOATZENAREN., MEIRE, £l
ferstft, EENLR SHE FERBEERL &, HRILEF S
(i £ 2 LL1AL SF R I By RO RHIF RS M B AT £ b B 7= L D 28 S Y4
1k, TUERTHRMTER, TER T 2RIOEE, BEEFARMTE,
X BEFENE, K EHAZEE A BIRH R .

AR, EAREBMKMNED T, REMTREIL™ L RIS,
wE e AABIE R H 2880, X EYLEE Fn RS ERRE L&,
bRk, MELEMPREERTSE LEEXERE, ARERE
BA R B ERENIRT, XESREEREL RIS RIIL
HERREMEROZBEMNATFSEREEZL. B, 51Tt
] SMIE T T B LB 3 T B L 3l Y R SR B R A B 1R
A, bRASHAEN, BEEEMER RKENSHZE,

HUB Tk B A e A R BB IRE “HREAEFRS". H1998
EIFAE, BATRRH TIEESRE T #E . BEEMBEM L, 222
ERAWE 5, Fl15Pearson, McGraw-Hill, Elsevier, MIT, John
Wiley & Sons, CengageZftF# L HIRA BN TRIFMAIERR, N
W TEL A BB T F 44 & Bk H Andrew S. Tanenbaum, Bjarne
Stroustrup, Brain W. Kernighan, Dennis Ritchie, Jim Gray, Afred V.
Aho, John E. Hopcroft, Jeffrey D. Ullman, Abraham Silberschatz,
William Stallings, Donald E. Knuth, John L. Hennessy, Larry L.
Peterson K £ K — ML HIES, UL “HHEHFZAE" hERd
M, ftigEEs]. MAkDE. KEASCENEE, BERLTXEM
B LA

“UEALBZNS" MHRTESS TENIZZRRDE, B
WHIEZ A RS TR RSB S, EAR &I E T BIEmE R

iv

BT, TR BIES tA M R R B S, AR EER
R EAER. £4, “TEHREAE" CREHRTERE T
B BB PR T REFR DR, HEIFSEERANERK
Hﬂ?%#%cﬁ%mﬁ“%ﬁﬁﬁ%@”ﬁ%%%%&ﬁﬁ%ﬁ%%
WEREBE R RA .

BREE . IR, —RIES . PRIER. RS,
X EERNMERE T REMRIE, &R SHERE LS
ﬂ@&%%ﬁ%@ﬁﬂﬁ&i%%ﬁ@k,ﬁ?ﬁﬁ@%ﬁ%ﬂ&ﬁ%
%*ﬂﬁﬁﬂ%ik~4%%%&,ﬁm%ﬁﬁ%ﬁéﬁi,ﬁﬁﬁm
0 R RITATE— 2R AR EEHY ., LA TYLRITRES
A TR RS TR E, ROTBRAGENT -

#£ERMyG. www.hzbook.com

B FHp{. hzjsj@hzbook.com
BEREIE. (010) 88379604

BRI, AR TEREGTAHHLT
W BL4RE5: 100037 BEARESERT S

PREFACE

Purpose/Goals

This book describes data structures, methods of organizing large amounts of data,
and algorithm analysis, the estimation of the running time of algorithms. As com-
puters become faster and faster, the need for programs that can handle large amounts
of input becomes more acute. Paradoxically, this requires more careful attention to
efficiency, since inefficiencies in programs become most obvious when input sizes are
large. By analyzing an algorithm before it is actually coded, students can decide if a
particular solution will be feasible. For example, in this text students look at specific
problems and see how careful implementations can reduce the time constraint for
large amounts of data from 16 years to less than a second. Therefore, no algorithm
or data structure is presented without an explanation of its running time. In some
cases, minute details that affect the running time of the implementation are explored.

Once a solution method is determined, a program must still be written. As
computers have become more powerful, the problems they must solve have become
larger and more complex, requiring development of more intricate programs. The
goal of this text is to teach students good programming and algorithm analysis skills
simultaneously so that they can develop such programs with the maximum amount
of efficiency.

This book is suitable for either an advanced data structures (CS7) course or
a first-year graduate course in algorithm analysis. Students should have some know-
ledge of intermediate programming, including such topics as pointers and recursion,
and some background in discrete math.

Approach

I believe it is important for students to learn how to program for themselves, not
how to copy programs from a book. On the other hand, it is virtually impossible to
discuss realistic programming issues without including sample code. For this reason,
the book usually provides about one-half to three-quarters of an implementation,
and the student is encouraged to supply the rest. Chapter 12, which is new to this
edition, discusses additional data structures with an emphasis on implementation

details.

vi

Preface

The algorithms in this book are presented in ANSI C, which, despite some
flaws, is arguably the most popular systems programming language. The use of C
instead of Pascal allows the use of dynamically allocated arrays (see, for instance,
rehashing in Chapter 5). It also produces simplified code in several places, usually
because the and (88&) operation is short-circuited.

Most criticisms of C center on the fact that it is easy to write code that is barely
readable. Some of the more standard tricks, such as the simultaneous assignment

and testing against 0 via
if (x=y)
are generally not used in the text, since the loss of clarity is compensated by only a

few keystrokes and no increased speed. I believe that this book demonstrates that
unreadable code can be avoided by exercising reasonable care.

Overview

Chapter 1 contains review material on discrete math and recursion. I believe the only
way to be comfortable with recursion is to see good uses over and over. Therefore,
recursion is prevalent in this text, with examples in every chapter except Chapter 5.

Chapter 2 deals with algorithm analysis. This chapter explains asymptotic anal-
ysis and its major weaknesses. Many examples are provided, including an in-depth
explanation of logarithmic running time. Simple recursive programs are analyzed
by intuitively converting them into iterative programs. More complicated divide-
and-conquer programs are introduced, but some of the analysis (solving recurrence
relations) is implicitly delayed until Chapter 7, where it is performed in detail.

Chapter 3 covers lists, stacks, and queues. The emphasis here is on coding
these data structures using ADTSs, fast implementation of these data structures, and
an exposition of some of their uses. There are almost no programs (just routines),
but the exercises contain plenty of ideas for programming assignments.

Chapter 4 covers trees, with an emphasis on search trees, including external
search trees (B-trees). The unix file system and expression trees are used as examples.
avL trees and splay trees are introduced but not analyzed. Seventy-five percent of the
code is written, leaving similar cases to be completed by the student. More careful
treatment of search tree implementation details is found in Chapter 12. Additional
coverage of trees, such as file compression and game trees, is deferred until Chapter
10. Data structures for an external medium are considered as the final topic in
several chapters.

Chapter § is a relatively short chapter concerning hash tables. Some analysis is
performed, and extendible hashing is covered at the end of the chapter.

Chapter 6 is about priority queues. Binary heaps are covered, and there is
additional material on some of the theoretically interesting implementations of
priority queues. The Fibonacci heap is discussed in Chapter 11, and the pairing heap
is discussed in Chapter 12.

Preface

Chapter 7 covers sorting. It is very specific with respect to coding details and
analysis. All the important general-purpose sorting algorithms are covered and
compared. Four algorithms are analyzed in detail: insertion sort, Shellsort, heapsort,
and quicksort. The analysis of the average-case running time of heapsort is new to
this edition. External sorting is covered at the end of the chapter.

Chapter 8 discusses the disjoint set algorithm with proof of the running time.
This is a short and specific chapter that can be skipped if Kruskal’s algorithm is not
discussed.

Chapter 9 covers graph algorithms. Algorithms on graphs are interesting, not
only because they frequently occur in practice but also because their running time is
so heavily dependent on the proper use of data structures. Virtually all of the standard
algorithms are presented along with appropriate data structures, pseudocode, and
analysis of running time. To place these problems in a proper context, a short
discussion on complexity theory (including NP-completeness and undecidability) is
provided.

Chapter 10 covers algorithm design by examining common problem-solving
techniques. This chapter is heavily fortified with examples. Pseudocode is used in
these later chapters so that the student’s appreciation of an example algorithm is not
obscured by implementation details.

Chapter 11 deals with amortized analysis. Three data structures from Chapters
4 and 6 and the Fibonacci heap, introduced in this chapter, are analyzed.

Chapter 12 is new to this edition. It covers search tree algorithms, the k-d tree,
and the pairing heap. This chapter departs from the rest of the text by providing
complete and careful implementations for the search trees and pairing heap. The
material is structured so that the instructor can integrate sections into discussions
from other chapters. For example, the top-down red black tree in Chapter 12 can
be discussed under avL trees (in Chapter 4).

Chapters 1-9 provide enough material for most one-semester data structures
courses. If time permits, then Chapter 10 can be covered. A graduate course
on algorithm analysis could cover Chapters 7-11. The advanced data structures
analyzed in Chapter 11 can easily be referred to in the earlier chapters. The
discussion of NP-completeness in Chapter 9 is far too brief to be used in such a
course. Garey and Johnson’s book on NP-completeness can be used to augment this

text.

Exercises

Exercises, provided at the end of each chapter, match the order in which material
is presented. The last exercises may address the chapter as a whole rather than a
specific section. Difficult exercises are marked with an asterisk, and more challenging
exercises have two asterisks.

A solutions manual containing solutions to almost all the exercises is available
to instructors from the Addison-Wesley Publishing Company.

vii

viii

Preface

References

References are placed at the end of each chapter. Generally the references either
are historical, representing the original source of the material, or they represent
extensions and improvements to the results given in the text. Some references

represent solutions to exercises.

Code Availability

The example program code in this book is available via anonymous ftp
at aw.com. It is also accessible through the World Wide Web; the URL is
http://www.aw.com/cseng/ (follow the links from there). The exact location of

this material may change.

Acknowledgments

Many, many people have helped me in the preparation of books in this series. Some
are listed in other versions of the book; thanks to all.

For this edition, 1 would like to thank my editors at Addison-Wesley, Carter
Shanklin and Susan Hartman. Teri Hyde did another wonderful job with the
production, and Matthew Harris and his staff at Publication Services did their usual
fine work putting the final pieces together.

M.A.W.

Miami, Florida
July, 1996

CONTENTS

1 Introduction 1

L1
1.2.

L3.

What's the Book About? 1

Mathematics Review 3

1.2.1. Exponents 3

1.2.2. Logarithms 3

1.2.3. Series 4

1.2.4. Modular Arithmetic 5

1.2.5. The P Word 6

A Brief Introduction to Recursion 8
Summary 12

Exercises 12

References 13

2 Algorithm Analysis 15

21
2.2.
2.3.
24.

Mathematical Background 15
Model 18
What to Analyze 18

Running Time Calculations 20
2.41. ASimple Example 21
2.42. General Rules 21
2.43. Solutions for the Maximum Subsequence Sum Problem
2.4.4. Logarithms in the Running Time 28
2.45. Checking Your Analysis 33
246. AGrainofSalt 33
Summary 34
Exercises 35
References 39

24

X

Contents

3 Lists, Stacks, and Queues 41

4

51
3.2.

33

3.4.

Trees
4.1.

4.2.

4.3.

4.4.

Abstract Data Types (ADTs) 41

TheListapr 42
3.2.1. Simple Array Implementation of Lists 43
3.2.2. LinkedLists 43
3.2.3. Programming Details 44
3.2.4. Common Errors 49
3.2.5. Doubly Linked Lists 51
3.26. Circularly Linked Lists 52
3.2.7. Examples 52
32.8. Cursor Implementation of Linked Lists 57

The Stack .o~ 62
3.3.1. Stack Model 62
33.2. Implementation of Stacks 63
3.3.3. Applications 71

The Queue ADT 79
3.4.1. Queue Model 79
3.4.2. Array Implementation of Queues 79
3.43. Applications of Queues 84
Summary 85
Exercises 85

89

Preliminaries 89
4.1.1. Implementation of Trees 90
4.1.2. Tree Traversals with an Application 91

Binary Trees 95
4.2.1. Implementation 96
4.2.2. Expression Trees 97

The Search Tree ApT—Binary Search Trees 100
43.1. MakeEmpty 101
43.2. Find 101
4.3.3. FindMin and FindMax 103
4.3.4. Insert 104
435. Delete 105
4.3.6. Average-Case Analysis 107

A Trees 110
4.4.1. Single Rotation 112
4.4.2. Double Rotation 115

Contents xi

" 45. SplayTrees 123
45.1. ASimple Idea (That Does Not Work) 124

452. Splajing 126
4.6. Tree Traversals (Revisited) 132
47. B-Trees 133

Summary 138

Exercises 139

References 146

5 Hashing 149
5.1. General Idea 149
5.2. Hash Function 150
5.3. Separate Chaining 152
5.4. Open Addressing 157

5.4.1. Linear Probing 157

5.4.2. QuadraticProbing 160
543. DoubleHashing 164

5.5. Rehashing 165

5.6. Extendible Hashing 168
Summary 171
Exercises 172
References 175

6 Priority Queues (Heaps) 177
6.1. Model 177
6.2. Simple Implementations 178

6.3. BinaryHeap 179
6.3.1. Structure Property 179
6.3.2. Heap Order Property 180
6.3.3. Basic Heap Operations 182
6.3.4. Other Heap Operations 186

6.4. Applications of Priority Queues 189
6.4.1. The Selection Problem 189
6.4.2. Event Simulation 191

xii Contents

6.5. d-Heaps 192
6.6. [Leftist Heaps 193
6.6.1. Leftist Heap Property 193
6.6.2. Leftist Heap Operations 194
6.7. SkewHeaps 200
6.8. Binomial Queues 202
6.8.1. Binomial Queue Structure 202
6.8.2. Binomial Queue Operations 204
6.8.3. Implementation of Binomial Queves 205
Summary 212
Exercises 212
References 216
7 Sorting 219
7.1. Preliminaries 219
7.2. Insertion Sort 220
7.2.1. The Algorithm 220
7.2.2. Analysis of Insertion Sort 221
7.3. A Lower Bound for Simple Sorting Algorithms
7.4. Shellsort 222
7.4.1. Worst-Case Analysis of Shellsort 224
7.5. Heapsort 226
7.5.1. Analysis of Heapsort 228
7.6. Mergesort 230
7.6.1. Analysis of Mergesort 232
7.7. Quicksort 235
7.7.1. Picking the Pivot 236
7.72. Partitioning Strategy 237
7.7.3. Small Arrays 240
7.7.4. Actual Quicksort Routines 240
7.7.5. Analysis of Quicksort 241
7.7.6. A Linear-Expected-Time Algorithm for Selection
7.8. Sorting Large Structures 247
7.9. A General Lower Bound for Sorting 247
7.9.1. Decision Trees 247
7.10. Bucket Sort 250
7.11. External Sorting 250

7.11.1. Why We Need New Algorithms 251
7.11.2. Model for External Sorting 251

221

245

Contents

7.11.3. The Simple Algorithm 251
7.114. Multiway Merge 253
7.115. Polyphase Merge 254
7.11.6. Replacement Selection 255
Summary 256

Exercises 257

References 261

8 The Disjoint SetApT 263

8.1
8.2.
8.3.
8.4.
85.
8.6.

8.7.

Equivalence Relations 263

The Dynamic Equivalence Problem 264
Basic Data Structure 265

Smart Union Algorithms 269

Path Compression 271

Worst Case for Union-by-Rank and Path Compression 275
8.6.1. Analysis of the Union/Find Algorithm 273

An Application 279

Summary 279

Exercises 280

References 281

9 Graph Algorithms 283

9L

9.2.
9.3.

94.

95.

Definitions 283
9.1.1. Representation of Graphs 284

Topological Sort 286

Shortest-Path Algorithms 290
9.3.1. Unweighted Shortest Paths 291
9.3.2. Dijkstra’s Algorithm 295
9.3.3. Graphs with Negative Edge Costs 304
9.3.4. Acyclic Graphs 305
9.3.5. All-Pairs Shortest Path 308

Network Flow Problems 308
9.4.1. A Simple Maximum-Flow Algorithm 309

Minimum Spanning Tree 313
9.5.1. Prim’s Algorithm 314
9.5.2. Kruskal's Algorithm 316

xiii

xiv Contents

9.6. Applications of Depth-First Search 319
9.6.1. Undirected Graphs 320
9.6.2. Biconnectivity 322
9.6.3. Euler Circuits 326
9.6.4. Directed Graphs 329
9.6.5. Finding Strong Components 331

9.7. Introduction to NP-Completeness 332
9.7.1. Easyvs.Hard 333
9.7.2. TheClassNP 334
9.7.3. NP-Complete Problems 335

Summary 337
Exercises 337
References 343

10 Algorithm Design Techniques 347

10.1. Greedy Algorithms 347
10.1.1. A Simple Scheduling Problem 348
10.1.2. Huffman Codes 351
10.1.3. Approximate Bin Packing 357

10.2. Divide and Conquer 365 !
10.2.1. Running Time of Divide and Conquer Algorithms 366
10.2.2. Closest-Points Problem 368
10.2.3. The Selection Problem 373
10.24. Theoretical Improvements for Arithmetic Problems 376

10.3. Dynamic Programming 380
10.3.1. Using a Table Instead of Recursion 380
10.3.2. Ordering Matrix Multiplications 383
103.3. Optimal Binary Search Tree 387
10.3.4. All-Pairs Shortest Path 390

10.4. Randomized Algorithms 392
10.4.1. Random Number Generators 394
1042. SkipLists 397
10.43. Primality Testing 399

10.5. Backtracking Algorithms 401
10.5.1. The Turnpike Reconstruction Problem 403
10.5.2. Games 407
Summary 413
Exercises 415
References 422

11

12

Amortized Analysis 427

11.1.
11.2,
1123,
11.4.

11.5.

An Unrelated Puzzle 428
Binomial Queues 428
Skew Heaps 433

Fibonacci Heaps 435

114.1. Cutting Nodes in Leftist Heaps 436
114.2. Lazy Merging for Binomial Queues 439
11.4.3. The Fibonacci Heap Operations 442
11.44. Proof of the Time Bound 443

Splay Trees 445
Summary 449
Exercises 450
References 451

Advanced Data Structures and Implementation

12.1.
12.2,

12.3.
12.4.
12.5.
12.6.
12.7.

Index

Top-Down Splay Trees 453
Red Black Trees 457

12.2.1. Bottom-Up Insertion 462
12.2.2. Top-Down Red Black Trees 463
12.2.3. Top-Down Deletion 465
Deterministic Skip Lists 469
AA-Trees 476

Treaps 482

k-d Trees 485

Pairing Heaps 488
Summary 494

Exercises 495

References 497

501

453

Contents

XY

CHAPTER 1

A

Introduction

In this chapter, we discuss the aims and goals of this text and briefly review
programming concepts and discrete mathematics. We will

o See that how a program performs for reasonably large input is just as important
as its performance on moderate amounts of input.

e Summarize the basic mathematical background needed for the rest of the
book.

o Briefly review recursion.

1.1. What's the Book About?

Suppose you have a group of N numbers and would like to determine the kth largest.
This is known as the selection problem. Most students who have had a programming
course or two would have no difficulty writing a program to solve this problem.
There are quite a few “obvious” solutions.

One way to solve this problem would be to read the N numbers into an array,
sort the array in decreasing order by some simple algorithm such as bubblesort, and
then return the element in position k.

A somewhat better algorithm might be to read the first k elements into an array
and sort them (in decreasing order). Next, each remaining element is read one by
one. As a new element arrives, it is ignored if it is smaller than the kth element
in the array. Otherwise, it is placed in its correct spot in the array, bumping one
element out of the array. When the algorithm ends, the element in the kth position
is returned as the answer.

Both algorithms are simple to code, and you are encouraged to do so. The
natural questions, then, are which algorithm is better and, more important, is either
algorithm good enough? A simulation using a random file of 1 million elements
and k = 500,000 will show that neither algorithm finishes in a reasonable amount
of time; each requires several days of computer processing to terminate (albeit

