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Preface

The progress of failure in metals, under various loading conditions, is as-
sumed to involve the degradation of a structure due to nucleation and growth
of defects, such as microvoids and microcracks, and their coalescence into
macrocracks. This process, generically termed damage, was first used to pre-
dict material failure and rupture in-service in an elevated condition. Although
damage mechanics provides a measure of material degradation on a microme-
chanics scale, the damage variables are introduced to reflect average material
degradation on a macromechanics scale and thus continuum damage mechan-
ics (CDM) was developed. In the micro-cracking of materials under different
stress conditions, damage is regarded as the progressive degradation. This ma-
terial degradation is reflected in the non-linear behaviour of the structures.
Non-linear analysis based on CDM provides conservative and realistic results.
Since the pioneering work of Kachanov in 1958, continuum damage mechan-
ics has been widely accepted to describe progressive failure due to material
degradation. The reason for its popularity is as much the intrinsic simplic-
ity and versatility of the approach, as well as its consistency based on the
theory of the thermodynamics of irreversible processes. When the crack pro-
files are not known a priori, the continuum damage mechanics approaches are
computationally very attractive. CDM is a very applicable and rapidly de-
veloping discipline. Now many papers are published and several international
conferences, e.g., IUTAM-Symposia or EUROMECH-Colloquia, take place.
Furthermore, a special International Journal of Damage Mechanics stresses
the importance of this branch of solid mechanics.

Based on the concept of Kachanov, many constitutive equations have been
developed to describe the phenomenological aspects of the damage process. In
addition to rupture times, secondary and tertiary progressive failure behavior
of materials can be well predicted using the phenomenological equations in
which the material is treated as a continuum. Since the detailed process of
degradation of the material is not easily examined, a theoretical description of
the damage state in a continuum and its evolution can be rather complicated
and some assumptions or postulates are made to describe the rate of damage
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evolution. The usual assumptions have a certain generality, which allows the
resulting equations to be fitted to different experimental data with a degree
of success but they are not based on microstructural observations or phys-
ical reasoning. The material constants in these equations do not have clear
physical meanings and the dominant damage mechanisms cannot be modeled
using the equations. So experimental investigations of damage mechanism in
this field are difficult, especially under multiaxial stress and non-proportional
loading. Therefore, entitative experimental data are scarcely available, so that
intrinsic comparisons between theory and the hypostatic experiment are of-
ten impossible. Material scientists studying damage are not content with this
vague description of damage. The dissatisfaction is reinforced when attempts
are made to model the growth of voids or cracks during degradation which
can lead to equations that do not appear to resemble those of the contin-
uum treatment. The weakness of the approach is further demonstrated by
the obvious experimental fact that there are several mechanisms of complex
damage, while the continuum equations appear to describe only one. Thus the
research on different damages has been extended into the area of categoriz-
ing damage mechanisms. Mathematical representations of the corresponding
damage mechanisms, damage evolution, and their effects on nonlinear defor-
mation have been studied and developed. Based on the development of the
understanding of the damage mechanisms, physically inspired, multivariable
damage models have been proposed and used for the modeling of complex
rupture of materials.

This book presents a systematic development of the theory of Contin-
uum Damage Mechanics and its numerical engineering applications using a
unified form of the mathematical formulations used in engineering for either
anisotropic or isotropic damage models. The principles presented in this book
include the latest progress in continuum damage mechanics and research in
this area developed by the authors. The presentation is theoretical in na-
ture emphasizing the detailed derivations of the various models and formu-
lations. The advanced works of various active researchers in this area are
also presented. The theoretical framework of this book is based on the ther-
modynamic theory of energy and material dissipation and is described by a
set of fundamental formulations of constitutive equations of damaged mate-
rials, development equations of the damaged state and evolution equations of
micro-structures. The theoretical framework of continuum damage mechanics
presented in this book is constructed based on thermodynamics that deals
with the theory of energy and material dissipation employing internal state
variables and is described by a set of fundamental formulations of constitu-
tive equations of damaged materials, development equations of the damaged
state and evolution equations of micro-structures. According to concepts of
damage-dissipation of the material state and effective evolution of material
properties, all these advanced equations, which take the non-symmetrized ef-
fects of damage aspects into account, are developed and modified from the
traditional general failure models so they are more easily applied and verified
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in a wide range of engineering practices by experimental testing. A number of
practical applications for continuum damage mechanics developed in this book
are presented in different engineering topics analyzed by different numerical
methods.

The book is divided into (1) an introduction; (2) review of damage me-
chanics; (3) basis of isotropic damage mechanics; (4) theory of isotropic elasto-
plastic damage mechanics; (5) basis of anisotropic damage mechanics; (6)
brittle damage mechanics of brittle materials; (7) theory of anisotropic elasto-
plastic damage mechanics; (8) theory of elasto-visco-plastic damage mechan-
ics; (9) dynamic damage problems of damaged materials.

Finally, the first author wishes to thank his hierophants Professor S. Val-
liapan of the University of New South Wales in Australia and Professor Xu
Zhixin of Tongji University in China, without whose academic guidance this
book would not have appeared. The authors would like to acknowledge the
financial support for their research works provided by the National Natural
Science Foundation of China.

Wohua Zhang
Yuangiang Cai
Hangzhou, China
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1

Introduction

When engineering materials are subjected to unfavorable conditions such as
cold and hot working processes, temperature variation, chemical action, radia-
tion, mechanical loading or environmental conditions, microscopic defects and
cracks may develop. It is generally accepted that a crack is induced or formed
by nucleation of micro-cavities that are enclosed in a region of discontinuities
or defects. The effects of these internal defects may reasonably be perceived
by dividing them into a single finite number of discontinuities. The distributed
defects in materials are responsible not only for the crack initiation and the
final fracture, but also for the induced deterioration or damage, such as a
reduction in strength, rigidity, toughness, stability, frequency, residual life or
an increase in stress, strain, dynamic response and damping ratio.

The study of the behavior of microscopic defects and cracks within ma-
terials is of interest to both material scientists and researchers in the field of
mechanics. For materials scientists, the major concern is the development pro-
cess of the microscopic cracks and methods for improving the micro-structure
of the material so as to improve the overall material performancewhereas re-
searchers in the field of mechanics tend to approach the effects of microscopic
defects in materials by introducing an internal state variable within the frame-
work of thermodynamics and continuum mechanics. This variable is termed
the damage variable [1-1~1-4].

An emerging discipline called Continuum Damage Mechanics [1-4]
has recently been receiving attention in an effort to systematically study the
growth of micro-cavities and its effect on the engineering behavior of materials.
This microscopic damage must somehow be quantified on a macroscopic level
within the framework of continuum damage mechanics by representing the
effects of distributed defects in terms of the internal state variables. A notion
of damage tensor (2;; was introduced to define the state of damage in the
continuum.

Because of the significant influence of damage on the safety aspect of strue-
tures, a great deal of research has been directed to this field during the last
twenty years. Kachanov [1-5] was the first to introduce such continuous vari-



