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Preface

This book is concerned with two aspects of the theory of integrable partial differential
equations. The first aspect is a normal form theory for such equations, which we
exemplify by the periodic Korteweg de Vries equation — undoubtedly one of the
most important nonlinear, integrable pdes. This makes for the ‘KdV” part of the title
of the book.

The second aspect is a theory for Hamiltonian perturbations of such pdes. Its
prototype is the so called KAM theory, developed for finite dimensional systems by
Kolmogorov, Amold and Moser. This makes for the ‘KAM’ part of the title of the
book.

To be more specific, our starting point is the periodic KdV equation considered
as an infinite dimensional, integrable Hamiltonian system admitting a complete set
of independent integrals in involution. We show that this leads to a single, global,
real analytic system of Birkhoff coordinates — the cartesian version of action-angle
coordinates —, such that the KdV Hamiltonian becomes a function of the actions
alone. In fact, these coordinates work simultaneously for all Hamiltonians in the
KdV hierarchy.

While the existence of global Birkhoff coordinates is a special feature of KdV,
local Birkhoff coordinates may be constructed via our approach for many integrable
pdes anywhere in phase space. Specifically this holds true for the defocusing nonlin-
ear Schrédinger equation, for which parallel results were developed in [51].

The globa! coordinates make it evident that all solutions of the periodic KdV
equation are periodic, quasi-periodic, or almost-periodic in time. It also provides a
convenient handle to study small Hamiltonian perturbations, by applying a suitable
generalization of the KAM theory to partial differential operators. To check the perti-
nent nondegeneracy conditions, we construct Birkhoff normal forms up to order six
to gain sufficient control over the KdV frequencies as functions of the actions. In fact,
these Birkhoff normal forms are just the first terms in the power series expansion of
the KdV Hamiltonian in Birkhoff coordinates.

Finally, we describe the set up, assumptions and conclusions of a general infinite
dimensional KAM theorem, that is applicable here and goes back to Kuksin. The
situation differs from more conventional applications of KAM to pdes in that the per-
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turbations are given by unbounded operators. This is only partially compensated by
a smoothing effect of the small divisors. In addition, one has to modify the iteration
scheme and use normal forms which also depend on angular variables.

Only recently, monographs on KAM theory for integrable pdes appeared, by
Bourgain [17], Craig [29], and Kuksin [75]. Of these, the first two choose a dif-
ferent approach, setting up a functional equation and applying a Lyapunov-Schmidt
decomposition scheme pioneered by Craig & Wayne [28]. The latter employs a nor-
mal form theory for Lax-integrable pdes near finite dimensional tori, which is based
on the Its-Matveev formula. In contrast, the normal form theory presented in this
book with its global features goes much further. It allows us to obtain a perturbation
theory for KdV from an abstract KAM theorem of a particularly simple form, and
to use Birkhoff normal forms to check the relevant nondegeneracy conditions. More-
over, this normal form might turn out to be useful for other long time stability results
for perturbed integrable pdes such as Nekhoroshev estimates.

This book is not only intended for the handful of specialists working at the in-
tersection of integrable partial differential equations and Hamiltonian perturbation
theory, but also researchers farther away from these fields. In fact, it is our intention
to reach out to graduate students as well. It is for this reason that first of all, we have
included a chapter on the classical theory, describing the finite dimensional back-
ground of integrable Hamiltonian systems and their perturbation theory according to
the theory initiated by Kolmogorov, Armold and Moser.

Secondly, we made the book self-contained, omitting only those proofs which
can be found in well known textbooks. We therefore included numerous appendices
— some of them, we hope, of independent interest — on topics from complex analysis
on Hilbert spaces, spectral theory of Schrédinger operators, Riemann surface theory,
representation of holomorphic differentials, and certain aspects of the KdV equation
such as the KdV hierarchy and new formulas for the KdV frequencies.

Thirdly, we wrote the book in a modular manner, where each of its five main
chapters — chapters Il to VI — as well as its appendices may be read independently of
each other. Every chapter has its own introduction, and the notation is explained. As a
result, there is some natural repetition and overlap among them. Moreover, the results
of these chapters are summarized in the very first chapter, titled “The Beginning”,
and here too we took the liberty to quote from the introductions to the later chapters.
We consider these repetitions a benefit for the reader rather than a nuisance, since it
allows him, or her, to peruse the material in a nonlinear manner.

This book took many years to complete, and during this long time we benefitted
from discussions and collaborations with many friends and colleagues. We wouid
like to thank all of them, in particular Benoit Grébert, with whom we developped
parallel results for the defocusing nonlinear Schrédinger equation in [51], and Jiirg
Kramer, for his contribution to the nondegeneracy result for the first KdV Hamilton-
ian. Most of all we are indebted to Jiirgen Moser, who initiated this joint effort and
never failed to encourage us as long as he was able to do so. We dedicate this book
to him.
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The second author also gratefully acknowledges the hospitality of the Forschungs-
institut at the ETH Ziirich and the Institute of Mathematics at the University of
Ziirich during many periods of our collaborative efforts, as well as the support of the
Deutsche Forschungsgemeinschaft, while the first author gratefully acknowledges
the support of the Swiss National Science Foundaton and of the European Research
Training Network HPRN-CT-1999-00118.

Finally we would like to thank Jules Hobbes for his never tiring TgXpertise from
the very first lines through many, many revisions up to the final, press-ready output,
and Jiirgen Jost and Springer Verlag for their pleasant cooperation to make this book
happen.

Last, but not least we thank our families for their patience and support during
these many years.
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I

The
Beginning

1 Overview

In this book we consider the Korteweg-de Vries (KdV) equation
Uy = —Uxxx + 6uux.

The KdV equation is an evolution equation in one space dimension which is named
after the two Dutch mathematicians Korteweg and de Vries [66] — see also Boussi-
nesq [18] and Rayleigh [113]. It was proposed as a model equation for long surface
waves of water in a narrow and shallow channel. Their aim was to obtain as solutions
solitary waves of the type discovered in nature by Russell [114] in 1834, Later it be-
came clear that this equation also models waves in other homogeneous, weakly non-
linear and weakly dispersive media. Since the mid-sixties the KdV equation received
a lot of attention in the aftermath of the computational experiments of Kruskal and
Zabusky [69], which lead to the discovery of the interaction properties of the solitary
wave solutions and in turn to the understanding of KdV as an infinite dimensional
integrable Hamiltonian system.

Our purpose here is to study small Hamiltonian perturbations of the KdV equa-
tion with periodic boundary conditions. In the unperturbed system all solutions are
periodic, quasi-periodic, or almost-periodic in time. The aim is to show that large
families of periodic and quasi-periodic solutions persist under such perturbations.
This is true not only for the KAV equation itself, but in principle for all equations in
the KdV hierarchy. As an example, the second KdV equation will also be considered.

The KdV Equation

Let us recall those features of the KdV equation that are essential for our purposes.
It was observed by Gardner [46], see also Faddeev & Zakharov [40], that the KdV
equation can be written in the Hamiltonian form

at dx du
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with the Hamiltonian
Hu) = fl (%ui + u3) dx,
s

where 3 H /3u denotes the L2-gradient of H, representing the Fréchet derivative of H
with respect to the standard scalar product on L2, Since we are interested in spatially
periodic solutions, we take as the underlying phase space the Sobolev space

#Y = HN(s"; R), s' =R/zZ,

of real valued functions with period 1, where N > 1 is an integer, and endow it with
the Poisson bracket proposed by Gardner,

aF d G
(F.G) = ,/s» 3u(x) dx du(n) O

Here, F and G are differentiable functions on " with L2-gradients in #¢'. This
makes # a Poisson manifold, on which the KdV equation may also be represented
in the form u, = {u, H) familiar from classical mechanics.

We note that the initial value problem for the KdV equation on the circle S! is
well posed on every Sobolev space #V with N > 1: for initial data u® € ¢V it has
been shown by Temam for N = 1, 2 [128] and by Saut & Temam for any real N > 2
[121] that there exists a unique solution evolving in #V and defined globally in time.
For further results on the initial value problem see for instance [78, 88, 126] as well
as the more recent results [14, 15, 64].

The KdV equation admits infinitely many conserved quantities, or integrals, in
involution, and there are many ways to construct such integrals [46, 94, 95]. Lax [77]
obtained a set of Poisson commuting integrals in a particularly elegant way by con-
sidering the spectrum of an associated Schrédinger operator. For

ue #° =1L%?=L¥S",R),

consider the differential operator

d?
" dx?
on the interval [0, 2] of mwice the length of the period of u# with periodic boundary

conditions. It is well known [80, 82, 84] that its spectrum, denoted spec(u), is pure
point and consists of an unbounded sequence of periodic eigenvalues

L= +u

Ao(u) < Ai(u) < Az(u) < A3(u) < Aq(u) < ---.

Equality or inequality may occur in every place with a ‘<’-sign, and one speaks of
the gaps (Aan—1(u), A2a(u)) of the potential u and its gap length

Yn(u) = A2n(u) — A2n—1(u), n>l

If some gap length is zero, one speaks of a collapsed gap, otherwise of an open gap.
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For u = u(¢, -) depending also on ¢ define the corresponding operator

d2
L@ = -3 +ut, ).

Lax observed that u is a solution of the KdV equation if and only if

d L =[B,L]
d’ - s v
where [B,L] = BL — LB denotes the commutator of L with the anti-symmetric
operator
d3 d
B=—-4—+3u—
dx3 + “ax

It follows by an elementary calculation that the solution of

d

dtU_BU’ Uuo)=1,
defines a family of unitary operators U (t) such that U*(¢)L(t)U(t) = L(0). Con-
sequently, the spectrum of L(¢) is independent of ¢, and so the periodic eigenvalues
An = An(u) are conserved quantities under the evolution of the KdV equation, a fact
first observed by Gardner, Greene, Kruskal & Miura [47]. Thus, the flow of the KdV
equation defines an isospectral deformation on the space of all potentials in V.

From an analytical point of view, however, the periodic eigenvalues are not satis-

factory as integrals, as A, is not a smooth function of u whenever the corresponding
gap collapses. But McKean & Trubowitz [89] showed that the squared gap lengths

d
+ 351&

v ), n>1,

together with the average

[u]=[ u(x)dx
si

form another set of integrals, which are real analytic on all of L? and Poisson com-
mute with each other. Moreover, the squared gap lengths together with the average
determine uniquely the periodic spectrum of a potential [48].

The space L? thus decomposes into the isospectral sets

Iso(u) = {v e L?: spec(v) = spec(u) },
which are invariant under the KdV flow and may also be characterized as
Iso(u) = {v € L?: gap lengths(v) = gap lengths(x), [v] = [u] J.

As shown by McKean & Trubowitz [89], these are compact connected tori, whose di-
mension equals the number of positive gap lengths and is infinite generically. More-
over, as the asymptotic behavior of the gap lengths characterizes the regularity of a
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potential in exactly the same way as its Fourier coefficients do [84], we have
ue #" o Isou)c 3V

for each N > 1. Hence also the phase space " decomposes into a collection of
tori of varying dimension which are invariant under the KdV flow.

Angle-Action and Birkhoff Coordinates

In classical mechanics the existence of a foliation of the phase space into Lagrangian
invariant tori is tantamount, at least locally, to the existence of angle-action coordi-
nates. This is the content of the Liouville-Arnold-Jost theorem. In the infinite dimen-
sional setting of the KdV equation, however, the existence of such coordinates is far
less clear as the dimension of the foliation is nowhere locally constant. Invariant tori
of infinite and finite dimension each form dense subsets of the foliation. Nevertheless,
angle-action coordinates can be introduced globally in the form of Birkhoff coordi-
nates as we describe now. They will form the basis of our study of perturbations of
the KdV equation.

To formulate the statement we define the phase spaces more precisely. For any
integer N > 0, let

HY = {ueL¥S" R): Jully < oo},

where ) )
A N |~
luliyy = 2@ + Y &I |a)|
keZ
is defined in terms of the discrete Fourier transform & of u. The Poisson structure
{-,-}is degenerate on FV and admits the average [ -] as a Casimir function. The
leaves of the corresponding symplectic foliation are given by [1] = const. Instead of
restricting the KdV Hamiltonian to each leaf, it is more convenient to fix one such
leaf, namely
Jfév = {u e #V: [u] =0],
which is symplectomorphic to each other leaf by a simple translation, and consider
the mean value as a parameter. On Jfév the Poisson structure is nondegenerate and
induces a sympiectic structure. Writing ¥ = v + ¢ with [v] = 0 and ¢ = [u], the
Hamiltonian then takes the form

H@w) = H.(v) + 3
with

H.(v) = /l (3v2+ v3)dx+6c‘/.l Jv?dx.
s s

We consider H, as a 1-parameter family of Hamiltonians on J(év .

We remark that |
H® = - [ vZdx
2 sl
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corresponds to translation and is the zero-th Hamiltonian of the KdV hierarchy, as
described in appendix C.
To describe the angle-action variables on J(é” we introduce the model space

b, =02 x €2
with elements (x, y), where

2= [x € AN,R): fIxl? = 3% |xal? < oo].

n>1

We endow £, with the standard Poisson structure, for which {x,,ym} = 8,m, while
all other brackets vanish.

The following theorem was first proven in [5] and [6]. A quite different approach
for this result — and the one we expand on here — was first presented in [60]. For a
related result for the nonlinear Schrédinger equation see [51].

Theorem 1.1. There exists a diffeomorphism
V: hyp— Jfg

with the following properties.
(i) W is one-to-one, onto, bi-analytic, and preserves the Poisson bracket.

(ii) For each N > 0, the restriction of ¥ to finy1,2, denoted by the same symbol,
is a map
W by o> HY,

which is one-to-one, onto, and bi-analytic as well.

(iii) The coordinates (x, y) in #32 are global Birkhoff coordinates for KdV. That is,
for any ¢ € R, the transformed Hamiltonian H; o ¥ depends only on x2 4+ y2,
n > 1, with (x, y) being canonical coordinates.

Thus, in the coordinates (x, y) the KdV Hamiltonian is a real analytic function
of the actions alone:

1
H.=H(I\, h,...), I,= §<x,% +y2),

with equations of motion

Xn = Wn(I)Yn, }"n = —wn(1)xn,
where SH
Wp = We,n = _c(l)’ I= (In)nzl-
al,

The whole system appears now as an infinite chain of anharmonic oscillators, whose
frequencies depend on their amplitudes in a nonlinear and real analytic fashion.
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These results are not restricted to the KdV Hamiltonian. They simultaneously
apply to every real analytic Hamiltonian in the Poisson algebra of all Hamiltoni-
ans which Poisson commute with all actions I}, I, .... In particular, one obtains
Birkhoff coordinates for every Hamiltonian in the KdV hierarchy defined in ap-
pendix C. As an example, we will later also consider the second KdV Hamiltonian.

The existence of Birkhoff coordinates makes it evident that every solution of the
KdV equation is almost-periodic in time. In the coordinates of the model space every
solution is given by

xa(t) = V213 sin(03 + wa(I°)),
Yn(t) = V21 cos(62 + wa (1)),

where (6°, 1°) corresponds to the initial data u°. Hence, it winds around the underly-
ing invariant torus

Tro={G,y):x2+yi=212, n>1}],

The solution in the original space Jt’é" is thus winding around the embedded torus
W(Ty0), and expanding W into its Taylor series, it is of the form

u(t) = W(x(), y@1))

— Z q‘k(lo, 60) ei(k.a)(lo))l X
kEZ>®,|k[<00

Here, (k,w) = Y, knws, and each W (I1°,6°) is an element of J{év . Thus, every
solution is almost-periodic in time.

We remark that the solution above can also be represented in terms of the Rie-
mann theta function. The corresponding formula is due to Its & Matveev [33].

Among all almost-periodic solutions there is a dense subset of quasi-periodic
solutions, which are characterized by a finite number of frequencies and correspond
to finite gap potentials. To describe them more precisely, let A C N be a finite index
set, and consider the set of A-gap potentials

9.A={u€.7£’8:y,,(u)>0¢>neA].

That is, u € § 4 if and only if precisely the gaps (A2,—1(1), A2, (1)) withn € A are
open. Clearly,
uega < Isou)C §a,

and all finite gap potentials are smooth, in fact real analytic, as almost all gap lengths
are zero.

As might be expected there is a close connection between the set §4 and the
subspace

ha={(x,y) €ho: x2+y: >0 ne Al



