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Preface to the Second Edition

Why did we write a second edition? A minor revision of the first edition
would have been adequate to correct the (admittedly many) typographical
mistakes. However, many of the nice comments that we received from stu-
dents and colleagues alike, ended with a remark of the type: “unfortunately,
you don’t discuss topic x”. And indeed, we feel that, after only five years,
the simulation world has changed so much that the title of the book was no
longer covered by the contents.

The first edition was written in 1995 and since then several new tech-
niques have appeared or matured. Most (but not all) of the major changes
in the second edition deal with these new developments. In particular, we
have included a section on:

o Transition path sampling and diffusive barrier crossing to simulate
rare events

e Dissipative particle dynamic as a course-grained simulation technique

¢ Novel schemes to compute the long-ranged forces

e Discussion on Hamiltonian and non-Hamiltonian dynamics in the con-
text of constant-temperature and constant-pressure Molecular Dynam-
ics simulations

e Multiple-time-step algorithms as an alternative for constraints

o Defects in solids

e The pruned-enriched Rosenbluth sampling, recoil growth, and con-
certed rotations for complex molecules

e Parallel tempering for glassy Hamiltonians

We have updated some of the examples to include also recent work. Several
new Examples have been added to illustrate recent applications.

We have taught several courses on Molecular Simulation, based on the
first edition of this book. As part of these courses, Dr. Thijs Vlugt prepared
many Questions, Exercises, and Case Studies, most of which have been in-
cluded in the present edition. Some additional exercises can be found on
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the Web. We are very grateful to Thijs Vlugt for the permission to reproduce
this material.

Many of the advanced Molecular Dynamics techniques described in this
book are derived using the Lagrangian or Hamilton formulations of classical
mechanics. However, many chemistry and chemical engineering students
are not familiar with these formalisms. While a full description of classical
mechanics is clearly beyond the scope of the present book, we have added
an Appendix that summarizes the necessary essentials of Lagrangian and
Hamiltonian mechanics.

Special thanks are due to Giovanni Ciccotti, Rob Groot, Gavin Crooks,
Thijs Vlugt, and Peter Bolhuis for their comments on parts of the text. In ad-
dition, we thank everyone who pointed out mistakes and typos, in particular
Drs. ].B. Freund, R. Akkermans, and D. Moroni.



Preface

This book is not a computer simulation cookbook. Our aim is to explain
the physics that is behind the “recipes” of molecular simulation. Of course,
we also give the recipes themselves, because otherwise the book would be
too abstract to be of much practical use. The scope of this book is necessarily
limited: we do not aim to discuss all aspects of computer simulation. Rather,
we intend to give a unified presentation of those computational tools that
are currently used to study the equilibrium properties and, in particular,
the phase behavior of molecular and supramolecular substances. Moreover,
we intentionally restrict the discussion to simulations of classical many-body
systems, even though some of the techniques mentioned can be applied to
quantum systems as well. And, within the context of classical many-body
systems, we restrict our discussion to the modeling of systems at, or near,
equilibrium.

The book is aimed at readers who are active in computer simulation
or are planning to become so. Computer simulators are continuously con-
fronted with questions concerning the choice of technique, because a bewil-
dering variety of computational tools is available. We believe that, to make a
rational choice, a good understanding of the physics behind each technique
is essential. Our aim is to provide the reader with this background.

We should state at the outset that we consider some techniques to be
more useful than others, and therefore our presentation is biased. In fact,
we believe that the reader is well served by the fact that we do not present
all techniques as equivalent. However, whenever we express our personal
preference, we try to back it up with arguments based in physics, applied
mathematics, or simply experience. In fact, we mix our presentation with
practical examples that serve a twofold purpose: first, to show how a given
technique works in practice, and second, to give the reader a flavor of the
kind of phenomena that can be studied by numerical simulation.

The reader will also notice that two topics are discussed in great detail,
namely simulation techniques to study first-order phase transitions, and var-
ious aspects of the configurational-bias Monte Carlo method. The reason
why we devote so much space to these topics is not that we consider them
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to be more important than other subjects that get less coverage, but rather
because we feel that, at present, the discussion of both topics in the literature
is rather fragmented.

The present introduction is written for the nonexpert. We have done so
on purpose. The community of people who perform computer simulations
is rapidly expanding as computer experiments become a general research
tool. Many of the new simulators will use computer simulation as a tool
and will not be primarily interested in techniques. Yet, we hope to convince
those readers who consider a computer simulation program a black box, that
the inside of the black box is interesting and, more importantly, that a better
understanding of the working of a simulation program may greatly improve
the efficiency with which the black box is used.

In addition to the theoretical framework, we discuss some cf the practical
tricks and rules of thumb that have become “common” knowledge in the
simulation community and are routinely used in a simulation. Often, it is
difficult to trace back the original motivation behind these rules. As a result,
some “tricks” can be very useful in one case yet result in inefficient programs
in others. In this book, we discuss the rationale behind the various tricks, in
order to place them in a proper context. In the main text of the book we
describe the theoretical framework of the various techniques. To illustrate
how these ideas are used in practice we provide Algorithms, Case Studies
and Examples.

Algorithms

The description of an algorithm forms an essential part of this book. Such
a description, however, does not provide much information on how to im-
plement the algorithm efficiently. Of course, details about the implementa-
tion of an algorithm can be obtained from a listing of the complete program.
However, even in a well-structured program, the code contains many lines
that, although necessary to obtain a working program, tend to obscure the
essentials of the algorithm that they express. As a compromise solution, we
provide a pseudo-code for each algorithm. These pseudo-codes contain only
those aspects of the implementation directly related to the particular algo-
rithm under discussion. This implies that some aspects that are essential for
using this pseudo-code in an actual program have to be added. For exam-
ple, the pseudo-codes consider only the x directions; similar lines have to be
added for the y and z direction if the code is going to be used in a simulation.
Furthermore, we have omitted the initialization of most variables.

Case Studies

In the Case Studies, the algorithms discussed in the main text are combined
in a complete program. These programs are used to illustrate some elemen-
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tary aspects of simulations. Some Case Studies focus on the problems that
can occur in a simulation or on the errors that are sometimes made. The com-
plete listing of the FORTRAN codes that we have used for the Case Studies
is accessible to the reader through the Internet.!

Examples

In the Examples, we demonstrate how the techniques discussed in the main
text are used in an application. We have tried to refer as much as possible to
research topics of current interest. In this way, the reader may get some feel-
ing for the type of systems that can be studied with simulations. In addition,
we have tried to illustrate in these examples how simulations can contribute
to the solution of “real” experimental or theoretical problems.

Many of the topics that we discuss in this book have appeared previ-
ously in the open literature. However, the Examples and Case Studies were
prepared specifically for this book. In writing this material, we could not
resist including a few computational tricks that, to our knowledge, have not
been reported in the literature.

In computer science it is generally assumed that any source code over 200
lines contains at least one error. The source codes of the Case Studies con-
tain over 25,000 lines of code. Assuming we are no worse than the average
programmer this implies that we have made at least 125 errors in the source
code. If you spot these errors and send them to us, we will try to correct
them (we can not promise this!). It also implies that, before you use part of
the code yourself, you should convince yourself that the code is doing what
you expect it to do.

In the light of the previous paragraph, we must add the following dis-
claimer:

We make no warranties, express or implied, that the programs
contained in this work are free of ertor, or that they will meet
your requirements for any particular application. They should
not be relied on for solving problems whose incorrect solution
could result in injury, damage, or loss of property. The authors
and publishers disclaim all liability for direct or consequential
damages resulting from your use of the programs.

Although this book and the included programs are copyrighted, we au-
thorize the readers of this book to use parts of the programs for their own
use, provided that proper acknowledgment is made.

Finally, we gratefully acknowledge the help and collaboration of many
of our colleagues. In fact, many dozens of our colleagues collaborated with
us on topics described in the text. Rather than listing them all here, we men-
tion their names at the appropriate place in the text. Yet, we do wish to

Inttp://molsim.chem.uva.nl/frenkel_smit
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express our gratitude for their input. Moreover, Daan Frenkel should like
to acknowledge numerous stimulating discussions with colleagues at the
FOM Institute for Atomic and Molecular Physics in Amsterdam and at the
van 't Hoff Laboratory of Utrecht University, while Berend Smit gratefully
acknowledges discussions with colleagues at the University of Amsterdam
and Shell. In addition, several colleagues helped us directly with the prepa-
ration of the manuscript, by reading the text or part thereof. They are Gio-
vanni Ciccotti, Mike Deem, Simon de Leeuw, Toine Schlijper, Stefano Ruffo,
Maria-Jose Ruiz, Guy Verbist and Thijs Vlugt. In addition, we thank Klaas
Esselink and Sami Karaborni for the cover figure. We thank them all for
their efforts. In addition we thank the many readers who have drawn our
attention to errors and omissions in the first print. But we stress that the
responsibility for the remainder of errors in the text is ours alone.
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w orientation of a molecule

(- ensemble average

¢ Deub average under condition indicated by sub
Super- and subscripts

* reduced units (default, usually omitted)

2 o component of vector r

i vector r associated with particle i

= excess part of quantity f

= ideal gas part of quantity f
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Symbol List: Algorithms

b(3j) trial orientation/position j

beta reciprocal temperature (1/kgT)

box simulation box length

delx maximum displacement

dt time step in an MD simulation
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t time in a MD simulation

temp temperature
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