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Preface

In teaching software engineering, experience has shown us that students are not
convinced of the benefits of using software engineering techniques until they
experience the benefits themselves. Completing a semester-long project is the
most effective way of convincing students that software engineering is critical
to their professional development. The software engineering course offered at
Plymouth State College is therefore a very practical, hands-on course focused on the
development of object-oriented software. Through the years, however, we became
frustrated with the lack of textbooks appropriate for such a course. The majority of
the available texts focus on the theoretical aspects of software engineering at the
expense of its practical aspects. The texts that are project-based do not focus on
the object-oriented paradigm. We wrote this textbook to fill this market gap.

This textbook focuses on actually performing software engineering. Theoret-
ical cencepts and terminology are introduced when they are necessary for suc-
cessful software development. Although we recognize that there are a very large
number of ways to develop software, we focus on a particular object-oriented soft-
ware development methodology applied to a class project.

Having students engage in this semester-long teamn project also allows them
to experience professional collaboration, which they seem to enjoy. Selecting an
appropriate project is the most critical and most difficult aspect of teaching a
project-based software engineering course. The project must be complex enough
to engage a software development team of three to five students and yet be readily
completed in fifteen weeks. More challenging than achieving proper scope is
finding a project that interests and excites the students. To this end, we have
provided a class project in the text. This project has been tested by Plymouth State
College students and was successfully and enthusiastically implemented by a team
of four students with varying programming and analytical skills.
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This text is targeted to undergraduate computer science majors with little or
no theoretical computer science in their background. The text is also written in a
manner that is as programming language independent as possible. When language
details are unavoidable, we have chosen Java as the programming language. We do
not mean this text to be a reference manual of software engineering techniques
and procedures. Instead, we provide a particular development methodology that
will allow the completion of a significant software project over the course of a
fifteen-week semester.

Since we assume the students will complete a project over the course of the
semester, we have included the semester schedule for our course in Chapter 2. This
schedule allows the project to begin swiftly at the start of the semester. Because we
want students to experience as much of the software development methodology as
possible, certain topics receive a less than comprehensive treatment. In particular,
eliciting functional requirements from discussions with nontechnical users is a
difficult task that requires much experience to accomplish successfully. Thus, we
have presumed that the requirements will have been nearly completed by the
instructor prior to the beginning of the semester.

To reinforce the practicality of the text, we also provide two running case
studies. These are presented in a manner that models the development of the
semester-long project. Sample deliverables are presented as part of the case studies
to give students examples of the types of materials they are expected to deliver
during the life cycle of their project.

Another important characteristic of this text is that it focuses on the object-
oriented software development paradigm almost exclusively. Although we see
the object-oriented approach as a logical extension of previous industry-adopted
paradigms, this text is structured for an object-oriented project conceptualization,
analysis, design, and implementation. A historical overview of software engineering
techniques is presented to introduce students to the precursors to the object-
oriented paradigm.

Although the long-enduring software crisis is not presented as the exclusive
motivation for using software engineering techniques, a series of software devel-
opment horror stories is included in the text so that students can see the results
of ignoring various aspects of software engineering. Rather than addressing these
stories as introductory material, they are included later in the text, so that there is
Iess delay in getting to chapters needed to start the software engineering project.

In introducing the techniques that comprise the object-oriented paradigm, the
Unified Modeling Language (UML) is used to model the software. Since UML is
extremely large and intimidating, a subset of the notation is introduced on an “as-
needed” basis. This book is not intended to serve as a comprehensive reference on
UML. Many such references exist. Instead, UML is used as a tool in this text, much
as it is used as a tool in the development of “real-world” software.
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Pedagogical Features

» Each chapter begins with a list of important concepts that will be covered in the
chapter.

* A class project that has been tested on our students runs throughout the text. The
project is large enough for three to five students to complete over the course of
a semester. Each chapter includes a set of activities that must be carried out in
order to complete the class project. A specification of the deliverables for each
part of the project is also included with the activities.

* Although the text includes a class project, the text is written so that an instructor
can simply ignore the class project sections. If the instructor chooses to ignore

" the class project, a different project (or set of projects) can be substituted.

* Review questions are included at the end of each chapter. These exercises allow
students additional practice with each of the topics covered in the book. They
vary in complexity and difficulty. ‘

» Exercises are included throughout each chapter. These exercises are most often
presented as thought experiments and in most cases can be completed in class
or out of class as deemed appropriate by the instructor.

* Unified Modeling Language is presented only when needed. When a particular
modeling technique is needed for a particular step in the development methodol-
ogy, the technique is described and examples are given. Through this approach,
a subset of UML is presented.

* Two case studies run through the text. The first case study begins early in the
text,and is developed as the various steps in the miethodology are presented. The
second case study begins in Chapter 6, which acts as a review of the analysis and
design phases of the development methodology. This second case study is then
carried through the remainder of the text.

» Summary boxes are presented to allow a review of the development methodology
at a quick glance.

* The chapters are organized so that students can realistically complete the class
project in a single semester. For example, during the last four weeks of the
class, while the students are engaged in coding and testing their projects and
the topics of implementation and testing have already been covered, the text
addresses topics such as project management, risk management, design patterns,
and software development horror stories. :

* Projects and schedules that have actually been tested in the classroom are in-
cluded in the text.

* The last chapter of the text turns the tables on the students, requiring them to
reflect on their experiences with the class project. It is entirely possible that

'«the experience of some project development teams may be less successful than
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others, so the discussion allows the students to review their course of action and
suggest improvements. The final chapter guides students through a formal and
professional presentation of their projects to the instructor and other classmates.

Supplements and Instructor Materials

Support materials are available to instructors adopting this textbook for classroom
use and include the following:

» PowerPoint slides for each figure in the book

* PowerPoint lecture slides for each chapter

« Solutions for the Questions for Review sections

 Sample solutions or hints to spark discussion for the exercises embedded in each
chapter

* A sample set of deliverables for the embedded class project

* Materials for two alternate class projects

* Source code for the Game2D case study.

Please check online information for this book at www.aw.com/cssupport for more
information on obtaining these supplements.

In addition to these resources, we anticipate publishing a student supplement
every two years that contains materials and exercises relevant for two different class
projects.

Class Project

Instructors are encouraged to substitute their own projects, or an alternate project
that has been provided as supplemental instructor material, for the specific class
project included in the text. Each chapter that pertains to the development of the
class project contains a section specifying class project-related goals and objectives,
These sections have been written in a generic manner and should pertain to an
alternate project as well as the project provided in the textbook.

There are a few sections of the book that address the included class project
specifically. These sections have been included because the sample project serves
as a particularly good example to illustrate a few of the design objectives discussed
in the text. In order to understand these sections, students do not need to be familiar
with the details of the included project, but rather simply need understand the idea
of playing a multi-player game over the Internet. The examples address the sequence
events comprising initiating such a multi-player game or making a board game-type
move.
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The following sections contain specific references to the class project:

* Section 1.10 contains the requirements specification. You may substitute an
alternate project description here. This section should be skipped if an alternate
project is being used. _

» Section 2.2.2 illustrates a sample informal scenario, which can be easily under-
stood by anyone familiar with common board games. We recommend using this
example even if another class project is being used.

+ Section 4.9 illustrates modeling the interprocess communication in the sample
class project. This illustration can be easily understood by someone who is
familiar with any multi-player, Internet-based game, so we recommend its use
Hy those using an alternate class project.
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