 EMSERRSS ARSI

=THENRHEIE
—— ERIXR A

PROJECT-BASED SOFTWARE
ENGINEERING

An Object-Oriented Approach

B Evelyn Stiller
Cathie LeBlanc

=T F HF MO

Higher Education Press
we Pearson Education

e e

EsMEFRE AR FERRRFIRFA S

BEFINE NS ITR
— MEIMNRAE

PROJECT-BASED SOFTWARE
ENGINEERING

An Object-Oriented Approach

F 8 E WM
Bl Pearson Education H! 5

E=: 01-2002-3768 S

Project-Based Software Engineering: An Object-Oriented Approach, First Edition
Evelyn Stiller, Cathie LeBlanc

A5 HE WA Pearson Education HARRIAIROILRIthiz e, ThHEETEHE.

English reprint edition copyright ©2002 by PEARSON EDUCATION NORTH ASIA LIMITED and
HIGHER EDUCATION PRESS. (Project-Based Software Engineering: An Object-Oriented Approach from
Addison-Wesley Publishing Company, Inc.’s edition of the Work)

Project-Based Software Engineering: An Object-Oriented Approach, le by Evelyn Stiller and Cathie
LeBlanc, Copyright ©2002.
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Addison-Wesley
Publishing Company, Inc.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special
Administrative Regions of Hong Kong and Macau).

EBEMEE (CIP) ¥ig

EFHENKETE, BRANRIE / (3 F#R
¥ (Stiller,E.) , (&) #$#%# (LeBlan,C.) ¥.
EEHA, —It5 . BmEH T S Rtt,2002. 10

ISBN 7-04 -011403 -8

[.%... L OF.. O%.. I %ETe s

EB-HH-%3x N, TP31L.5
" [B A I 4 CIP BB (2002) %5 081691 &

EFFHMBS TR —ERIRTE EHPH
Evelyn Stiller,Cathie LeBlanc

HIEETT HHEFHKME ML 010—64054588

it H EETARBREYHEE#HE S S %IMAH 800—810—0598
BEEI4REL 100009 3] 3t http.//www. hep. edu. cn
i3 B 010—64014048 http://www. hep. com. cn
@2 W HEBIEREETER

2)] Bl BESETFHBALEOR

F X 787x1092 1/16 i3 x O20024E10 BB 1R
2 ¥ 25.25 £n & 2002410 A4S 1 WENRI
] ¥ 620 000 b3 #t 29.00 3T

ABMERT AR BEAEHBAE, E2TWEBHEHIRRAR.
IRARFR A TR

th hR % A

20 HAK, U EANBEEHARA N RRGE R FREAIYREF. B B,
BERXLEFFLETRARH. GEEHFRRNAEERNA, 5 T HEREREE
FLhthEGRE, HEFERTRT FEAHER.

#HN21 L, AHEFREWMAN WTO, FEFLHEGFE SR Em#I. REE
BEVERE 20 HEXBETARLE, BERAERML, £E50E. EXR2HE
ExRML, EARAZE. BEXEEUNARERMEL " LNERE2E Y, REAH
HERATRERBFBERASARERHE. FIABIM ERFRERREEMS, AL
HHFREDFREERRRIGERY, REFBAWRERARGREREEHARAA
TREE —HEEXFHE.

A, RERERHBSFETERHE LT RERRFPBERER NI HEAT
. FMRHRBTHARER, —REGAT, —REMNME. EFFHTHREEER
FHAL#EHEXLANEANT, 23U REHNE, F-HEFTERELHTARE
B 20 M| HHMCERENR. XEHAMBREZE T ZHFF, XPALDE
HREEHEEARFREL EX. BN EBZERRRE EHFRARTHENR S
H, RETHWHRAEENFERATHN AT, TENBLRERLEY, SERN
Bl 3E RBEMHE Y. XEHAEAEE TIHHENHZS5EAR L LNRERR, BRI TR
Bl RAHE. s@MEFEERL.

BHl, HEHEALE 35S FIEREATEEREFREER, XOEMFHERE
ERFERASWEERHY — AMESRGFRORY T, SEEREERAHF
HRIARERE, BEHFTHRLEHBFAXLTRMRGEFRNRFEERET
MU ERBFRAS, ERBSALAHK, UFEARGERABRIGERE.

BMAEZXLHERA NI HHE S TREREFEERE ERFHARNHEA
P, GAE5EREHATHLZE, wRFEFR-ABEAIFREEINEREGELEHARAA
I, REABBRGBRAER. FotEOT0RP)S KB fE RS RAO A5 S THER
HEFRWELMZEY. KA FRX: hep.cs@263.net.

BEHRE B
Z—OO0ZHEANAH

Preface

In teaching software engineering, experience has shown us that students are not
convinced of the benefits of using software engineering techniques until they
experience the benefits themselves. Completing a semester-long project is the
most effective way of convincing students that software engineering is critical
to their professional development. The software engineering course offered at
Plymouth State College is therefore a very practical, hands-on course focused on the
development of object-oriented software. Through the years, however, we became
frustrated with the lack of textbooks appropriate for such a course. The majority of
the available texts focus on the theoretical aspects of software engineering at the
expense of its practical aspects. The texts that are project-based do not focus on
the object-oriented paradigm. We wrote this textbook to fill this market gap.

This textbook focuses on actually performing software engineering. Theoret-
ical cencepts and terminology are introduced when they are necessary for suc-
cessful software development. Although we recognize that there are a very large
number of ways to develop software, we focus on a particular object-oriented soft-
ware development methodology applied to a class project.

Having students engage in this semester-long teamn project also allows them
to experience professional collaboration, which they seem to enjoy. Selecting an
appropriate project is the most critical and most difficult aspect of teaching a
project-based software engineering course. The project must be complex enough
to engage a software development team of three to five students and yet be readily
completed in fifteen weeks. More challenging than achieving proper scope is
finding a project that interests and excites the students. To this end, we have
provided a class project in the text. This project has been tested by Plymouth State
College students and was successfully and enthusiastically implemented by a team
of four students with varying programming and analytical skills.

-_Preface

This text is targeted to undergraduate computer science majors with little or
no theoretical computer science in their background. The text is also written in a
manner that is as programming language independent as possible. When language
details are unavoidable, we have chosen Java as the programming language. We do
not mean this text to be a reference manual of software engineering techniques
and procedures. Instead, we provide a particular development methodology that
will allow the completion of a significant software project over the course of a
fifteen-week semester.

Since we assume the students will complete a project over the course of the
semester, we have included the semester schedule for our course in Chapter 2. This
schedule allows the project to begin swiftly at the start of the semester. Because we
want students to experience as much of the software development methodology as
possible, certain topics receive a less than comprehensive treatment. In particular,
eliciting functional requirements from discussions with nontechnical users is a
difficult task that requires much experience to accomplish successfully. Thus, we
have presumed that the requirements will have been nearly completed by the
instructor prior to the beginning of the semester.

To reinforce the practicality of the text, we also provide two running case
studies. These are presented in a manner that models the development of the
semester-long project. Sample deliverables are presented as part of the case studies
to give students examples of the types of materials they are expected to deliver
during the life cycle of their project.

Another important characteristic of this text is that it focuses on the object-
oriented software development paradigm almost exclusively. Although we see
the object-oriented approach as a logical extension of previous industry-adopted
paradigms, this text is structured for an object-oriented project conceptualization,
analysis, design, and implementation. A historical overview of software engineering
techniques is presented to introduce students to the precursors to the object-
oriented paradigm.

Although the long-enduring software crisis is not presented as the exclusive
motivation for using software engineering techniques, a series of software devel-
opment horror stories is included in the text so that students can see the results
of ignoring various aspects of software engineering. Rather than addressing these
stories as introductory material, they are included later in the text, so that there is
Iess delay in getting to chapters needed to start the software engineering project.

In introducing the techniques that comprise the object-oriented paradigm, the
Unified Modeling Language (UML) is used to model the software. Since UML is
extremely large and intimidating, a subset of the notation is introduced on an “as-
needed” basis. This book is not intended to serve as a comprehensive reference on
UML. Many such references exist. Instead, UML is used as a tool in this text, much
as it is used as a tool in the development of “real-world” software.

Preface

Pedagogical Features

» Each chapter begins with a list of important concepts that will be covered in the
chapter.

* A class project that has been tested on our students runs throughout the text. The
project is large enough for three to five students to complete over the course of
a semester. Each chapter includes a set of activities that must be carried out in
order to complete the class project. A specification of the deliverables for each
part of the project is also included with the activities.

* Although the text includes a class project, the text is written so that an instructor
can simply ignore the class project sections. If the instructor chooses to ignore

" the class project, a different project (or set of projects) can be substituted.

* Review questions are included at the end of each chapter. These exercises allow
students additional practice with each of the topics covered in the book. They
vary in complexity and difficulty. ‘

» Exercises are included throughout each chapter. These exercises are most often
presented as thought experiments and in most cases can be completed in class
or out of class as deemed appropriate by the instructor.

* Unified Modeling Language is presented only when needed. When a particular
modeling technique is needed for a particular step in the development methodol-
ogy, the technique is described and examples are given. Through this approach,
a subset of UML is presented.

* Two case studies run through the text. The first case study begins early in the
text,and is developed as the various steps in the miethodology are presented. The
second case study begins in Chapter 6, which acts as a review of the analysis and
design phases of the development methodology. This second case study is then
carried through the remainder of the text.

» Summary boxes are presented to allow a review of the development methodology
at a quick glance.

* The chapters are organized so that students can realistically complete the class
project in a single semester. For example, during the last four weeks of the
class, while the students are engaged in coding and testing their projects and
the topics of implementation and testing have already been covered, the text
addresses topics such as project management, risk management, design patterns,
and software development horror stories. :

* Projects and schedules that have actually been tested in the classroom are in-
cluded in the text.

* The last chapter of the text turns the tables on the students, requiring them to
reflect on their experiences with the class project. It is entirely possible that

'«the experience of some project development teams may be less successful than

Preface

others, so the discussion allows the students to review their course of action and
suggest improvements. The final chapter guides students through a formal and
professional presentation of their projects to the instructor and other classmates.

Supplements and Instructor Materials

Support materials are available to instructors adopting this textbook for classroom
use and include the following:

» PowerPoint slides for each figure in the book

* PowerPoint lecture slides for each chapter

« Solutions for the Questions for Review sections

 Sample solutions or hints to spark discussion for the exercises embedded in each
chapter

* A sample set of deliverables for the embedded class project

* Materials for two alternate class projects

* Source code for the Game2D case study.

Please check online information for this book at www.aw.com/cssupport for more
information on obtaining these supplements.

In addition to these resources, we anticipate publishing a student supplement
every two years that contains materials and exercises relevant for two different class
projects.

Class Project

Instructors are encouraged to substitute their own projects, or an alternate project
that has been provided as supplemental instructor material, for the specific class
project included in the text. Each chapter that pertains to the development of the
class project contains a section specifying class project-related goals and objectives,
These sections have been written in a generic manner and should pertain to an
alternate project as well as the project provided in the textbook.

There are a few sections of the book that address the included class project
specifically. These sections have been included because the sample project serves
as a particularly good example to illustrate a few of the design objectives discussed
in the text. In order to understand these sections, students do not need to be familiar
with the details of the included project, but rather simply need understand the idea
of playing a multi-player game over the Internet. The examples address the sequence
events comprising initiating such a multi-player game or making a board game-type
move.

N

3‘

Preface

The following sections contain specific references to the class project:

* Section 1.10 contains the requirements specification. You may substitute an
alternate project description here. This section should be skipped if an alternate
project is being used. _

» Section 2.2.2 illustrates a sample informal scenario, which can be easily under-
stood by anyone familiar with common board games. We recommend using this
example even if another class project is being used.

+ Section 4.9 illustrates modeling the interprocess communication in the sample
class project. This illustration can be easily understood by someone who is
familiar with any multi-player, Internet-based game, so we recommend its use
Hy those using an alternate class project.

Acknowledgments

Thanks to Maite Suarez-Rivas and Katherine Haruntunian from Addison Wesley for
the incredibly positive support in the writing of this text. Jody Girouard was in-
strumental in the development of materials for instructors adopting the textbook
as well as in providing feedback about the book from a student’s perspective. John
Girouard, Mark Henwood, Nick Rago, and David Sleeper were students in the first
software engineering course that used the Use Case Centered Development meth-
odology. They implemented Galaxy Sieuth and provided tremendous feedback
about the methodology. Liz Johnson from Xavier University used an early version of
the text in her software engineering class and helped us understand where our writ-
ing wad unclear. Finally, numerous reviewers provided us with valuable feedback
on the manuscript as it progressed. Some of these reviewers remain anonymous
and we thank them for their work. The following reviewers examined later vet-
sions of the manuscript and helped us to tighten up our prose to provide better
explanations:

Michael Beeson, San Jose State University

Jorge L. Diaz-Herrera, Southern Polytechnic State University
Jozo Dujmovic, San Francisco State University
Mohamed Fayad, University of Nebraska, Lincoln

J. W. Fendrich, Illinois State University

J- A. “Drew” Hamilton, Naval Postgraduate School
Alex Iskold, New York University

Jonathan Maletic, University of Memphis

Michael McCracken, Georgia Institute of Technology
Fatma Mili, Oakland University

Robert Noonan, College of William and Mary

Preface

Srini Ramaswamy, Tennessee Technological University
Steve Roach, University of Texas, El Paso

Don Shafer, Athens Group, Inc.

Bill Shay, University of Wisconsin, Green Bay

James E. Tomayko, Carnegie Mellon University

David Umphress, Auburn University

Shon Vick, University of Maryland, Baltimore County
Linda Werner, University of California, Santa Cruz
Janusz Zalewski, University of Central Florida

Contents

Preface

ciarier 1 Introduction to Software Engineering

1.1
1.2
1.3

1.4

1.5
1.6
1.7
1.8
1.9
1.10

Key Concepts

‘Why Engineer Software?

Elements of a Software Development Paradigm
1.3.1 Project Conceptualization

1.3.2 Project Representation

1.3.3 Project Implementation

A Brief History of Software Engineering Techniques
1.4.1 Structured Programming

1.4.2 Functional Decomposition

1.4.3 Structured Analysis and Design
1.4.4 Data-Centered Paradigm

1.4.5 Object-Oriented Paradigm

The Costs of Not Engineering Software
‘Why Software Engineering Is Not Universal
The Role of the Project

Working in Teams

Creating the Project Team

CLASS PROJECT: Functional Requirements
1.10.1 Project Overview

1.10.2 Game Elements

1.10.3 The Game Sequence of Events
1.10.4 Moving and Landing on Planets

1
1
1
7
7
9
0

1
10
12
12
14
16
18
22
22
23
24
24
26
27
28
28
30

Contents

1.10.5 Winning the Game
1.10.6 Project Time Frame

1.11 Questions for Review

CHAPTER 2 Object-Oriented Paradigm Overview

21
2.2

2.3

24

25

2.6
2.7

2.8

Key Concepts

Getting Acquainted with the Class Project

2.2.1 Guidelines for Creating Informal Scenarios
2.2.2 Sample Informal Scenario: User Makes a Move
Object-Oriented Conceptualization

2.3.1 Application-Specific Relationships

2.3.2 Inheritance

2.3.3 Aggregation/Composition

2.3.4 Other Categorizations of Relationships
The Software Life Cycle

2.4.1 The Software Development Process
Object-Oriented Modeling

2.5.1 Role of Model Building

2.5.2 Creating Quality Modules

2.5.3 Modeling Notation

254 Use of Models in Software Engineering
Qualities of a Good Object-Oriented System
Working in Teams

2.7.1 The Chief Programmer Team

2.7.2 Holding Effective Team Meetings

Questions for Review

CHAPTER Object-Oriented Analysis

3.1
3.2
33
3.4
3.5
36
37

Key Concepts

Introduction to Requirements Analysis

The Importance of Requirements Analysis
Requirements Specification

CASE STUDY: Library Management System Specification
Evaluating the Requirements Specification

Refining the Requirements Specification
3.7.1 Prototyping as a Refinement Tool

31
31

32

35

35
35
36
37
38
39
40
41
42
43
43
49
49
50
53
54
55
57
57
58
60

63
63
63
64
67
69
71

73
73

vii

Contents

3.8 Verifying the Requirements Specification 80
3.9 Propagating Requirements throughout Development 82
3.10 The Process of Requirements Analysis 82
3.10.1 Identifying Classes of UCCD 83
3.10.2 CASE STUDY: Identifying Classes for LMS 86
3.10.3 Identifying Use Cases 88
3.10.4 CASE STUDY: Identifying Use Cases in LMS 89
3.10.5 Scenario Development 92
3.10.6 CASE STUDY: Sample Scenarios in LMS 93
3.10.7 Modeling the System with UML 95
3.10.8 Class Diagrams 96
3.10.9 CASE STUDY: Class Diagrams for LMS 98
3.10.10 Use Case Diagrams 101
3.10.11 CASE STUDY: Use Case Diagrams for LMS 103
3.10.12 Requirements Analysis Summary 105
3.10.13 Evolving the System 107

3.11 Analyzing the CLASS PROJECT 107
3.12 Working in Teams 108
3.13 Questions for Review 109
ciarter 8 Product Design 111
4.1 Key Concepts 111
4.2 Objectives of Design 111
4.3 Class Design versus Product Design 112
4.4 Product Design Overview and Objectives 112
4.5 Object Persistence 114
4.5.1 Object Serialization 115

4.5.2 Evaluating Object Persistence 118

4.6 CASE STUDY: Object Persistence in LMS 118
4.7 Process Architecture 120
4.7.1 Modeling Multiple Nodes 121

4.7.2 Modeling Interprocess Communication 123

4.7.3 State Machines 123

4.7.4 Modeling Multiple Threads of Control 126

4.7.5 Effective Use of Network Resources 126

4.8 CASE STUDY: Interprocess Communication in LMS] 127
4.9 CLASS PROJECT: Interprocess Communication in Galaxy Sleuth 127

Contents

4.10 User Interfaces

4.11 User Interface Design
4.11.1 User-Friendliness

4.12 User Interface Design Principles
4.12.1 XKnow the User
4.12.2 Rules for Interface Design
4.12.3 Interaction Styles

4.13 CASE STUDY: User Interface for LMS

4.14 Working in Teams

4.15 Class Project Product Design

4.16 Questions for Review

cHarTER B Class Design
5.1 Key Concepts
5.2 The Class Design Process
5.2.1 Class Skeletons
5.2.2 CASE STUDY: Class Skeletons in LMS
5.2.3 System Decomposition
5.3 More UML
5.3.1 Notational Adorhments for Class Diagrams
5.3.2 Interaction Diagrams
5.3.3 CASE STUDY: Interaction Diagrams for LMS
5.3.4 Collaboration Diagram Creation
5.3.5 CASE STUDY: More Interaction Diagrams in LMS
5.3.6 Evaluating Design
5.3.7 CASE STUDY: Evaluating Design of LMS
5.3.8 Object Diagrams
5.3.9 CASE STUDY: Object Diagrams for LMS
5.3.10 Object Diagram Creation
5.4 Objectives of the Class Design Phase
5.4.1 Code Reuse
5.4.2 CASE STUDY: Code Reuse in LMS
5.4.3 Well-Designed Classes and Methods
5.4.4 Data Integrity

5.5 Verification of the Class Design
5.6 Designing the CLASS PROJECT
5.7 Questions for Review

131
132
133
135
135
137
140
150
159
159
160

163
163
163
165
165
168
170
170
173
174
178
180
183
183
184
184
185
186
186
187
188
188

189
191
192

Contents

chariir @ CASE STUDY: Game2D with Method
Design
6.1 Key Concepts
6.2 Overview
6.3 Requirements Specification
6.4 Refined Requirements Specification
6.5 Requirements Analysis
6.5.1 List of Nouns
6.5.2 Analysis of List of Nouns
6.5.3 List of Primary Classes
6.5.4 Use Case Development
6.5.5 Scenarios
6.5.6 Refined Class List
6.5.7 Modeling
6.6 Product Design
6.6.1 Process Architecture
6.6.2 Graphical User Interface Review
6.7 Class Design
6.7.1 Interaction Diagrams
6.7.2 Object Diagrams
6.7.3 Reuse
6.7.4 Class Skeletons
6.8 Method Design
6.8.1 Specifying Methods
6.8.2 Method Design for Game2D
6.8.3 Creating Quality Methods
6.9 Questions for Review

chapTer 4 Implementation
7.1 Key Concepts
7.2 Introduction

7.3 Implementation Approaches
7.3.1 Big Bang Implementation
7.3.2 Top-Down versus Bottom-Up Implementation
7.3.3 Combining the Top-Down and Bottom-Up Approaches
7.3.4 Threads Approach to Implementation

7.4 Implementation Plan

193

193

193
194
194
198
198
198
200
200
205
207
208
210
211
214
214
214
216
218
221

227
227
228
231

233

235

235
235
236
236
237
241
242

242

Contents

7.5
7.6

7.7

7.8

7.9

CASE STUDY: Implementation Plan for the LMS
Programming Style

7.6.1 Shorter Is Simpler

7.6.2 Simpler Code Has Fewer Decisions

7.6.3 Excessively Nested Logic Should Be Avoided
Comments and Internal Documentation

7.7.1 Header Comment Block

7.7.2 Line Comments

Project Coding Standards

7.8.1 CASE STUDY: Programming Standards for the LMS
Implementing the CLASS PROJECT

7.10 Questions for Review

charer 8 Testing

8.1
8.2
8.3
8.4

85

8.6
8.7

8.8
8.9

Key Concepts

‘What Is Testing?

Principles of Object-Oriented Testing
Definitions

8.4.1 Error, Fault, and Failure

8.4.2 Test Plan

8.4.3 Test Oracle

84.4 'Test Cases

8.4.5 White Box Testing

8.4.6 Black Box Testing

8.4.7 Unit Testing

8.4.8 Integration Testing

849 System Testing

Testing Steps

8.5.1 Analysis of Test Results
Special Issues for Testing Object-Oriented Systems
CASE STUDY: Testing the LMS

8.7.1 ‘Test Plan

8.7.2 Unit Testing Phase I

8.7.3 Formulating Test Cases
Testing the CLASS PROJECT

Testing in the Face of Change: Configuration Management

8.10 Questions for Review

245
248
250
251
253
254
255
256
257
259
261
261

263
263
263
264
265
265
266
268
268
269
270
271
272
274
275
276

277
279
280
282
283
285
285
289

Contents

cHarTER 9 Project Management

9.1
9.2
9.3

9.4

9.5

9.6

9.7

9.8

9.9
9.10

9.11

Key Concepts
Introduction

Project Manager Responsibilities

9.3.1 Software Metrics

9.3.2 CASE STUDY: Project Estimation

9.3.3 Quality Control Metrics

9.3.4 The Mythical Staff-Month
Configuration Management

9.4.1 Version Control

9.4.2 Change Control

9.4.3 Configuration Audit

9.44 Configuration Status Reporting

Project Planning and Monitoring

9.5.1 Evolving the Project

9.5.2 CASE STUDY: Evolving Game2D

9.5.3 The Project Plan

9.54 CASE STUDY: Project Plan for Game2D
9.5.5 Scheduling

9.5.6 Monitoring Progress

Project Teams

9.6.1 Building a Project Team

9.6.2 The Four Stages of Team Development
9.6.3 Conflict

9.6.4 Conflict Resolution

Risk Management

9.7.1 Sources of Technical Risk

9.7.2 Sources of Human Risk

9.7.3 Consequences of Risk

Reducing Risk

9.8.1 Early Product Evaluation

9.8.2 Early Implementation of Risky System Aspects
9.8.3 Early Use of New Technology

9.8.4 Early Resolution of Class Interaction Problems

Further Readings on Risk Management

CASE STUDY: Risk Analysis in the LMS
9.10.1 Risk Trade-Offs in the LMS
9.10.2 Technical Risks in the LMS

Questions for Review

291
201
291
293
294
301
303
304
305
306
307
308
308
309
310
311
312
313
315
317
319
319
321
323
324
325
326
329
331
332
332
333
333
333
333
334
334
334

335

