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Preface to Revised First Edition

This edition of Bounded Analytic Functions is the same as the first edition except
for the corrections of several mathematical and typographical errors. I thank the
many colleagues and students who have pointed out errors in the first edition.
These include S. Axler, C. Bishop, A. Carbery, K. Dyakonov, J. Handy, V. Havin, H.
Hunziker, P. Koosis, D. Lubinsky, D. Marshall, R. Mortini, A. Nicolau, M. O’Neill,
W. Rudin, D. Sarason, D. Suirez, C. Sundberg, C. Thiele, S. Treil, 1. Uriarte-Tuero,
Y. Viisild, N. Varopoulos, and L. Ward.

1 had planned to prepare a second edition with an updated bibliography and an
appendix on results new in the field since 1981, but that work has been postponed for
too long. In the meantime several excellent related books have appeared, including
M. Andersson, Topics in Complex Analysis; G. David and S. Semmes, Singular
Integrals and Rectifiable Sets in R" and Analysis of and on Uniformly Rectifi-
able Sets; S. Fischer, Function theory on planar domains; P. Koosis, Introduction
to Hy spaces, Second edition; N. Nikolski, Operators, Functions, and Systems;
K. Seip, Interpolation and Sampling in Spaces of Analytic Functions; and B. Simon,
Orthogonal Polynomials on the Unit Circle.

Several problems posed in the first edition have been solved. I give references
only to Mathematical Reviews. The question page 167 on when £, contains a
Blaschke product was settled by A. Stray in MR 0940287. M. Papadimitrakis, MR
0947674, gave a counterexample to the conjecture in Problem 5 page 170. The late
T. Wolff, MR 1979771, had a counterexample to the Baernstein conjecture cited
on page 260. S. Treil resolved the g? problem on page 319 in MR 1945294. A
constructive Fefferman-Stein decomposition of functions in BMO(R") was given
by the late A. Uchiyama in MR 1007515, and C. Sundberg, MR 0660188, found
a constructive proof of the Chang-Marshall theorem. Problem 5.3 page 420 was
resolved by Garnett and Nicolau, MR 1394402, using work of Marshall and Stray
MR 1394401. Problem 5.4. on page 420 remains a puzzle, but Hjelle and Nicolau
(Pacific Journal of Mathematics, 2006) have an interesting result on approximation
of moduli. P. Jones, MR 0697611, gave a construction of the P. Beurling linear
operator of interpolation.

I thank Springer and F. W. Gehring for publishing this edition.

John Garnett
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Preliminaries

As a preparation, we discuss three topics from elementary real or complex
analysis which will be used throughout this book.

The first topic is the invariant form of Schwarz’s lemma. It gives rise to
the pseudohyperbolic metric, which is an appropriate metric for the study of
bounded analytic functions. To illustrate the power of the Schwarz lemma, we
prove Pick’s theorem on the finite interpolation problem

[ () =wj, i=12,...,n,

with | f(z)| < 1.

The second topic is from real analysis. It is the circle of ideas relating Poisson
integrals to maximal functions.

The chapter ends with a brief introduction to subharmonic functions and
harmonic majorants, our third topic.

1. Schwarz’s Lemma

Let D be the unit disc {z : |z| < 1} in the complex plane and let £ denote
the set of analytic functions from D into D. Thus |f(z)| < 1 if f € . The
simple but surprisingly powerful Schwarz lemma is this:

Lemma 1.1. If f(z) € B, and if f(0) = 0, then
[f@l < lzl, z#0,
[f O <1.

Equality holds in (1.1) at some point z if and only if f(z) = €%z, ¢ a real
constant.

(1.1)

The proof consists in observing that the analytic function g(z) = f(@)/z
satisfies |g| < 1 by virtue of the maximum principle.

We shall use the invariant form of Schwarz’s lemma due to Pick. A
Mdbius transformation is a conformal self-map of the unit disc. Every M&bius

1



2 PRELIMINARIES Chap. 1

transformation can be written as

t(z)zein—ZO

1— 7oz
with ¢ real and |zg| < 1. With this notation we have displayed zo = =1(0).
Lemma 1.2. If f(2) € %, then

| f(2) — f(z0)l 72— 20
1.2 —— , s
(1.2) 11— F(z0) f () = T 7oz Z# 20
and
(1.3) If@r 1

L—|f@P = 1=z
Equality holds at some point z if and only if f(2) is a Mébius transformation.

The proof is the same as the proof of Schwarz’s lemma if we regard 7(z) as
the independent variable and

@) — f(zo)
1— f(zo)f(2)

as the analytic function. Letting z tend to z¢ in (1.2) gives (1.3) at z = zp, an
arbitrary point of D.
The pseudohyperbolic distance on D is defined by

Z—w

oz, w) =

1 —wz

Lemma 1.2 says that analytic mappings from D to D are Lipschitz continuous
in the pseudohyperbolic distance:

o(f(2), f(w)) < p(z, w).

The lemma also says that the distance p(z, w) is invariant under Maobius
transformations:

p(z, w) = p(r(2), T(w)).
We write K (zg, r) for the noneuclidean disc
K(zo.r)={z:p&,z0) <r}, O<r<l.

Since the family 42 is invariant under the Mobius transformations, the study of
the restrictions to K(zg, r) of functions in 4 is the same as the study of their
restrictions to K(0, r) = {Jjw| < r}. In such a study, however, we must give
K (zo, r) the coordinate function w = 7(z) = (z — 20)/(1 — Zoz). For example,
the set of derivatives of functions in & do not form a conformally invariant
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family, but the expression

(1.4) L @I = 1z1%)

is conformally invariant. The proof of this fact uses the important identity

_ 2 1— 2 1—17 2
|1 — Zoz|

(1.5) 1— —
1 —Zoz

which is (1.3) with equality for f(z) = t(z). Hence if f(z) = g(1(2)) = g(w),
then

LA @I = |z)*) = g IIT' @I — |21 = |g’ )1 — |w]?)

and this is what is meant by the invariance of (1.4).
The noneuclidean disc K (zp, r), 0 < r < 1, is the inverse image of the disc

|w| < r under
Z— 20
w=1(7)= ———.
1 —Zoz

Consequently K(zo, r) is also a euclidean disc A(c, R) = {z: |z —c| < R},
and as such it has center

(1.6) [ —r2
. cC = —
L= P2zl
and radius
1—|z/?
1.7 _
a4-n 1 —r2|zo|?

These can be found by direct calculation, but we shall derive them geo-
metrically. The straight line through 0 and zg is invariant under 7, so that
K (z9,r) = - }(|lw| = r) is a circle orthogonal to this line. A diameter of
K (z0, r) is therefore the inverse image of the segment [~rzo/)zol, rzo/|z0l].
Since z = (w + z0)/(1 + Zow), this diameter is the segment

(1.8) (o, B] = [ 120l =7 20 lzol+7r 20 ]

1 —rlzol 120l 1+ rlzol 20l
The endpoints of (1.8) are the points of K (zg, r) of largest and smallest
modulus. Thus ¢ = (o + 8)/2 and R = | — «|/2 and (1.6) and (1.7) hold.

Note that if 7 is fixed and if |zg| — 1, then the euclidean radius of K (zg, r) is
asymptotic to 1 — |zg].

Corollary 1.3. If f(z) € %, then

|£O)] + Iz

1.9 —
(1.9) |f(2)] < T I7 O]
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Proof. By Lemma 1.2, p(f(2), f(0)) < |z|, so that f(2) € K(f(0), |z). The
bound on | f(z)| then follows from (1.8). Equality can hold in (1.9) only iffis
a Mébius transformation and arg z = arg f(0) when f(0) #0. [J

The pseudohyperbolic distance is a metric on D. The triangle inequality for
p follows from

Lemma 1.4. For any three points 29, 21, 22 in D,

p(z0, 22) — p(z2, 21) p(20, 22) + p(z2, 21)
1.10 < p(z0,21) = .
(1.10) 1 — p(z0, 22)P(22, 21) plo. 21) 1 + o(z0, 22)p(22, 21)

Proof. 'We can suppose z, = 0 because p is invariant. Then (1.10) becomes

Izo| — {z1l
1 —|zellzsl —

Z1 — 20
1 —Zozy

< |zo|+lzll_
1+ |zollzsl

(1.11)

If |z;] =r, then z = (21 — 20)/(1 — Zoz)) lies on the boundary of the non-
euclidean disc K (—zq, r), and hence |z| lies between the moduli of the end-
points of the segment (1.8). That proves (1.11). Of course (1.10) and especially
(1.11) are easy to verify directly. [

Every Mobius transformation w(z) sending zo to wo can be written

w — Wo io £ — 20
e’

1 —wow = 1—2Zpz

Differentiation then gives

1 — |wol?

(1.12) lw'(zo)| = >
|zol

This identity we have already encountered as (1.3) with equality. By (1.12) the
expression
2\dz|

1.13 ds =
(1.13) s - 2]

is a conformal invariant of the disc. We can use (1.13) to define the hyperbolic
length of a rectifiable arc y in D as

f 2|dz|
y 1- |Z'2 '
We can then define the Poincaré metric Yr(zy, z2) as the infimum of the hyper-

bolic lengths of the arcs in D joining z; to zz. The distance ¥(z1, z2) is then
conformally invariant. If z; = 0, z; = r > 0, it is not difficult to see that

dx o 1+r
1 1,

¥(z1, 22) =2/
0
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Since any pair of points z; and z, can be mapped to 0 and p(z1,22) =
l(z2 — z1)/(1 — Z122)|, respectively, by a Mdbius transformation, we therefore
have

14+ p(z1, 22)
. 23) = log ————1 =22
v, ) BT o )
A calculation then gives
{1, 2
p(21,22) = tanh (1”—('2—2—))

Moreover, because the shortest path from O to 7 is the radius, the geodesics, or
paths of shortest distance, in the Poincaré metric consist of the images of the
diameter under all Mébius transformations. These are the diameters of D and
the circular arcs in D orthogonal to dD. If these arcs are called lines, we have
a model of the hyperbolic geometry of Lobachevsky.

In this book we shall work with the pseudohyperbolic metric p rather than
with ¥, although the geodesics are often lurking in our intuition.

Hyperbolic geometry is somewhat simpler in the upper half plane H =
{z=x+iy:y >0} Ins¥

71 — 22
21— 22

21, 22) =

and the element of hyperbolic arc length is
ldz|

ds = —.

y

Geodesics are vertical lines and circles orthogonal to the real axis. The con-
formal self-maps of S that fix the point at 0o have a very simple form:

7(z) = az + xo, a>0, xg € R.

Horizontal lines {y = yo} can be mapped to one another by these self-maps of
7. This is not the case in D with the circles {|z] = r}. In J# any two squares

{xo <x <xo+h,h<y<?2h)

are congruent in the noneuclidean geometry. The corresponding congruent
figures in D are more complicated. For these and for other reasons, /¢ is often
the more convenient domain for many problems.

2. Pick’s Theorem

A finite Blaschke product is a function of the form

n
; 2—=2Zj
Bz_etsoll J, z:l < 1.
@) jll—ZjZ ljl



