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Preface

The subject of this book, first order large-sample theory, constitutes a co-
herent body of concepts and results that are central to both theoretical and
applied statistics. This theory underlies much of the work on such different
topics as maximum likelihood estimation, likelihood ratio tests, the boot-
strap, density estimation, contingency table analysis, and survey sampling
methodology, to mention only a few. The importance of this theory has
led to a number of books on the subject during the last 20 years, among
them Ibragimov and Has'minskii (1979), Serfling (1980), Pfanzagl and We-
fimeyer (1982), Le Cam (1986), Riischendorf (1988), Barndorff-Nielson and
Cox (1989, 1994), Le Cam and Yang (1990), Sen and Singer (1993), and
Ferguson (1996).

These books all reflect the unfortunate fact that a mathematically com-
plete presentation of the material requires more background in probability
than can be expected from many students and workers in statistics. The
present, more elementary, volume avoids this difficulty by taking advan-
tage of an important distinction. While the proofs of many of the theorems
require a substantial amount of mathematics, this is not the case with the
understanding of the concepts and results nor of their statistical applica-
tions.

Correspondingly, in the present introduction to large-sample theory, the
more difficult results are stated without proof, although with clear state-
ments of the conditions of their validity. In addition, the mode of probabilis-
tic convergence used throughout is convergence in probability rather than
strong (or almost sure) convergence. With these restrictions it is possible
to present the material with the requirement of only two years of calculus
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and, for the later chapters, some linear algebra. It is the purpose of the
book, by these means, to make large-sample theory accessible to a wider
audience.

It should be mentioned that this approach is not new. It can be found
in single chapters of more specialized books, for example, Chapter 14 of
Bishop, Fienberg, and Holland (1975) and Chapter 12 of Agresti (1990).
However, it is my belief that students require a fuller, more extensive treat-
ment to become comfortable with this body of ideas.

Since calculus courses often emphasize manipulation without insisting on
a firm foundation, Chapter 1 provides a rigorous treatment of limits and
order concepts which underlie all large-sample theory. Chapter 2 covers the
basic probabilistic tools: convergence in probability and in law, the central
limit theorem, and the delta method. The next two chapters illustrate the
application of these tools to hypothesis testing, confidence intervals, and
point estimation, including efficiency comparisons and robustness consider-
ations. The material of these four chapters is extended to the multivariate
case in Chapter 5.

Chapter 6 is concerned with the extension of the earlier ideas to statistical
functionals and, among other applications, provides introductions to U-
statistics, density estimation, and the bootstrap. Chapter 7 deals with the
construction of asymptotically efficient procedures, in particular, maximum
likelihood estimators, likelihood ratio tests, and some of their variants.
Finally, an appendix briefly introduces the reader to a number of more
advanced topics.

An important feature of large-sample theory is that it is nonparametric.
Its limit theorems provide distribution-free approximations for statistical
quantities such as significance levels, critical values, power, confidence co-
efficients, and so on. However, the accuracy of these approximations is not
distribution-free but, instead, depends both on the sample size and on the
underlying distribution. To obtain an idea of the accuracy, it is necessary
to supplement the theoretical results with numerical work, much of it based
on simulation. This interplay between theory and computation is a crucial
aspect of large-sample theory and is illustrated throughout the book.

The approximation methods described here rest on a small number of
basic ideas that have wide applicability. For specific situations, more de-
tailed work on better approximations is often available. Such results are not
included here; instead, references are provided to the relevant literature.

This book had its origin in a course on large-sample theory that I gave
in alternate years from 1980 to my retirement in 1988. It was attended
by graduate students from a variety of fields: Agricultural Economics, Bio-
statistics, Economics, Education, Engineering, Political Science, Psychol-
ogy, Sociology, and Statistics. I am grateful to the students in these classes,
and particularly to the Teaching Assistants who were in charge of the asso-
ciated laboratories, for many corrections and other helpful suggestions. As
the class notes developed into the manuscript of a book, parts were read
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1
Mathematical Background

Preview

The principal aim of large-sample theory is to provide simple approxima-
tions for quantities that are difficult to calculate exactly. The approach
throughout the book is to embed the actual situation in a sequence of
situations, the limit of which serves as the desired approximation.

The present chapter reviews some of the basic ideas from calculus re-
quired for this purpose such as limit, convergence of a series, and continu-
ity. Section 1 defines the limit of a sequence of numbers and develops some
of the properties of such limits. In Section 2, the embedding idea is intro-
duced and is illustrated with two approximations of binomial probabilities.
Section 3 provides a brief introduction to infinite series, particularly power
series. Section 4 is concerned with different rates at which sequences can
tend to infinity (or zero); it introduces the o, <, and O notation and the
three most important growth rates: exponential, polynomial, and logarith-
mic. Section 5 extends the limit concept to continuous variables, defines
continuity of a function, and discusses the fact that monotone functions
can have oniy simple discontinuities. This result is applied in Section 6
to cumulative distribution functions; the section also considers alternative
representations of probability distributions and lists the densities of prob-
ability functions of some of the more common distributions.



2 1. Mathematical Background
1.1 The concept of limit

Large-sample (or asymptotic*) theory deals with approximations to prob-
ability distributions and functions of distributions such as moments and
quantiles. These approximations tend to be much simpler than the exact
formulas and, as a result, provide a basis for insight and understanding
that often would be difficult to obtain otherwise. In addition, they make
possible simple calculations of critical values, power of tests, variances of
estimators, required sample sizes, relative efliciencies of different methods,
and so forth which, although approximate, are often accurate enough for
the needs of statistical practice.

Underlying most large-sample approximations are limit theorems in which
the sample sizes tend to infinity. In preparation, we begin with a discussion
of limits. Consider a sequence of numbers a,, such as

1 12345
].11 n: —_—— = y ,.-': Ty Ty Ty & s
(1-L1) tn=1-2(=12..) 05,3 155
and
1 3 815 24 35
1.1.2 n=1-=mn=12...): 0,-, -, —, ey
(1.1.2) ¢ =i ) 0351625 36°
or, more generally, the sequences
1 1
1.1.3 —a—-anda, =a— —
( ) an=a nanda a-—3

for some arbitrary fixed number a.

Two facts seem intuitively clear: (i) the members of both sequences in
(1.1.3) are getting arbitrarily close to a as n gets large; (ii) this “conver-
gence” toward a proceeds faster for the second series than for the first. The
present chapter will make these two concepts precise and give some simple
applications. But first, consider some additional examples.

The sequence obtained by alternating members of the two sequences
(1.1.3) is given by

a—% if n is odd,

(1.1.4) an

a— % ifniseven:

111 1
162" 5°

1
_la - an?
4 4 ¢ .36

41 —51

*The term “asymptotic” is not restricted to large-sample situations but is used quite
generally in connection with any limit process. See, for example, Definition 1.1.3. For
some general discussion of asymptotics, see, for example, DeBruijn (1958).
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For this sequence also, the numbers get arbitrarily close to a as n gets
large. However, they do so without each member being closer to a than
the preceding one. For a sequence a,,n = 1,2,..., to tend to a limit a as
n — 00, it is not necessary for each a, to be closer to a than its predecessor
an_1, but only for a, to get arbitrarily close to a as n gets arbitrarily large.

Let us now formalize the statement that the members of a sequence
an,m = 1,2 ..., get arbitrarily close to a as n gets large. This means
that for any interval about a, no matter how small, the members of the
sequence will eventually, i.e., from some point on, lie in the interval. If
such an interval is denoted by (a — €, a + €) the statement says that from
some point on, i.e., for all n exceeding some ng, the numbers a,, will satisfy
a—¢€ < an < a+ e or equivalently

(1.1.5) |a, — a] < € for all n > ny.

The value of ng will of course depend on ¢, so that we will sometimes write
it as ng(e); the smaller e is, the larger is the required value of ng(e).

Definition 1.1.1 The sequence a,,n = 1,2,..., is said to tend (or con-
verge) to a limit a; in symbols:
(1.1.6) ap, >@asn—oo or lima,=a

n—oo

if, given any € > 0, no matter how small, there exists ng = ng(e) such that
(1.1.5) holds.

For a formal proof of a limit statement (1.1.6) for a particular sequence
a,, it is only necessary to produce a value ng = ng(e) for which (1.1.5) holds.
As an example consider the sequence (1.1.1). Herea = 1 and a,,—a = -1/n.
For any given ¢, (1.1.5) will therefore hold as soon as % <eormn> % For
€ = 1/10,np = 10 will do; for ¢ = 1/100, no = 100; and, in general, for any
¢, we can take for ng the smallest integer, which is > %

In examples (1.1.1)-(1.1.4), the numbers a,, approach their limit from
one side (in fact, in all these examples, a, < a for all n). This need not be
the case, as is shown by the sequence

- % if n is odd 1
(1.1.7) an, = =1+ (-1)"-.
1+% if n is even n

It may be helpful to give an example of a sequence which does not tend
to a limit. Consider the sequence

0,1,0,1,0,1,...

given by a,, = 0 or 1 as n is odd or even. Since for arbitrarily large n,a,
takes on the values 0 and 1, it cannot get arbitrarily close to any a for all
sufficiently large n.

The following is an important example which we state without proof.



4 1. Mathematical Background
Example 1.1.1 The exponential limit. For any finite number c,
C n
(1.1.8) (1+—) — € as n — oo.
n
To give an idea of the speed of the convergence of a,, = (1 + %)n to its limit

e, here are the values of a, for a number of values of n, and the limiting
value e(n = 00) to the nearest 1/100.

TABLE 1.1.1. (1+ )" to the nearest 1/100

n 1 3 5 10 30 50 100 500 oo
a, | 2.00 237 249 259 267 269 270 2.72 2.72

To the closest 1/1000, one has asop = 2.716 and e = 2.718. O

The idea of limit underlies all of large-sample theory. Its usefulness stems
from the fact that complicated sequences {a,} often have fairly simple
limits which can then be used to approximate the actual a,, at hand. Table
1.1.1 provides an illustration (although here the sequence is fairly simple).
It suggests that the limit value a = 2.72 shown in Table 1.1.1 provides a
good approximation for n > 30 and gives a reasonable ballpark figure even
for n as small as 5.

Contemplation of the table may raise a concern. There is no guarantee
that the progress of the sequence toward its limit is as steady as the tabu-
lated values suggest. The limit statement guarantees only that eventually
the members of the sequence will be arbitrarily close to the limit value, not
that each member will be closer than its predecessor. This is illustrated by
the sequence (1.1.4). As another example, let

1/+/n if n is the square of an integer (n =1,4,9,...)
(1.1.9) a, =
1/n  otherwise.

Then a, — 0 (Problem 1.7) but does so in a somewhat irregular fashion.
For example, for n = 90,91,...,99, we see a, getting steadily closer to the
limit value 0 only to again be substantially further away at n = 100. In
sequences encountered in practice, such irregular behavior is rare. (For a
statistical example in which it does occur, see Hodges (1957)). A table such
as Table 1.1.1 provides a fairly reliable indication of smooth convergence
to the limit.
Limits satisfy simple relationships such as: if a, — a,b, — b, then

(1.1.10) ap+b, 2a+b and a, b, —a-0b,

(1.1.11) Gp by —a-b
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and
(1.1.12) an /by — a/b provided b # 0.

These results will not be proved here. Proofs and more detailed treatment
of the material in this section and Section 1.3 are given, for example, in
the classical texts (recently reissued) by Hardy (1992) and Courant (1988).
For a slightly more abstract treatment, see Rudin (1976).

Using (1.1.12), it follows from (1.1.8), for example, that

1+2\"
(1.1.13) (1 n ’;) —e* P asn— o0

n

An important special case not covered by Definition 1.1.1 arises when a
sequence tends to co. We say that a, — oo if eventually (i.e., from some
point on) the a’s get larger than any given constant M. Proceeding as in
Definition 1.1.1, this leads to

Definition 1.1.2 The sequence a,, tends to co; in symbols,

(1.1.14) an — 00 or lim a, =00
n—od

if, given any M, no matter how large, there exists ng = ng (M) such that
(1.1.15) a, > M for all n > ny.

Some sequences tending to infinity are

(1.1.16) an, =n® for any @ > 0

(this covers sequences such as ¢/n = n!/3,/n =n1/% .. and n?,n3,...);
(1.1.17) an, = e°" for any a > 0;

(1.1.18) an, = logn, a, = /logn, a, =loglogn.

To see, for example, that logn — oo, we check (1.1.15) to find that logn >
M provided n > eM (here we use the fact that €!°6™ = n), so that we can
take for ng the smallest integer that is > eM.

Relations (1.1.10)-(1.1.12) remain valid even if a and/or b are oo with
the exceptions that co — 00,00 - 0, and oo/oo are undefined.

The case a, — —00 is completely analogous (Problem 1.4) and requires
the corresponding restrictions on (1.1.10)—(1.1.12).

Since throughout the book we shall be dealing with sequences, we shall
in the remainder of the present section and in Section 4 consider relations
between two sequences a,, and b,,n = 1,2,..., which are rough analogs of
the relations a = b and a < b between numbers.



6 1. Mathematical Background

Definition 1.1.3 Two sequences {a,} and {b,} are said to be (asymptot-
ically) equivalent as n — oo; in symbols:

(1.1.19) G ~ by
if
(1.1.20) an/bn — 1.

This generalizes the concept of equality of two numbers a and b, to which
it reduces for the sequences a,a,a,... and b, b,b,. ...

If b, tends to a finite limit b # 0, (1.1.20) simply states that a, tends
to the same limit. However, if the limit b is 0 or +oo, the statement a, ~
b,, contains important additional information. Consider, for example, the
sequences a, = 1/n? and b, = 1/n, both of which tend to zero. Since their
ratio a, /b, tends to zero, the two sequences are not equivalent. Here are
two more examples:

(1.1.21) an =n+n2 b, =n
and
(1.1.22) an =n+n?, b, =n?

in both of which a, and b, tend to co. In the first, a, /b, — 0o so that
@, and b, are not equivalent; in the second, a,/b, — 1 so that they are
equivalent.

A useful application of the idea of equivalence is illustrated by the se-
quences

(1.1.23) an =

the two sequences are equivalent. The replacement of a complicated se-
quence such as a,, by a simpler asymptotically equivalent sequence b,, plays
a central role in large-sample theory.

Replacing a true a,, by an approximating b,, of course resuits in an error.

Consider, for example, the two equivalent sequences (1.1.22). When n =
100,

a. = 10,100, &, = 10,000,
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and the error (or absolute error) is |a, — by | = 100. On the other hand, the

- b
(1.1.24) relative error = |22 "
Gn
. 100 D .
is 16.100 which is less than .01. The small relative error corresponds to

the fact that, despite the large absolute error of 100, b, gives a pretty good
idea of the size of a,,.

As the following result shows, asymptotic equivalence is closely related
to relative error.

Lemma 1.1.1 The sequences {a,} and {b,} are asymptotically equivalent
if and only if the relative error tends to zero.

Proof. The relative error

b

an — by =’1___n_ .

an an

if and only if b, /a, — 1. [ ]

The following is a classical example of asymptotic equivalence which
forms the basis of the application given in the next section.

Example 1.1.2 Stirling’s formula. Consider the sequence
(1.1.25) p=nl=1-2...n.

Clearly, a, — 0o as n — o0, but it is difficult from the defining formula
to see how fast this sequence grows. We shall therefore try to replace it by
a simpler equivalent sequence by,. Since n" is clearly too large, one might
try, for example, (n/2)". This turns out to be still too large, but taking
logarithms leads (not obviously) to the suggestion b, = (n/e)". Now only a
relatively minor further adjustment is required, and the final result (which
we shall not prove) is Stirling’s formula

(1.1.26) n! ~ V2rn(n/e)".

The following table adapted from Feller (Vol. 1) (1957), where there is also
a proof of (1.1.26), shows the great accuracy of the approximation (1.1.26)
even for small n.

It follows from Lemma 1.1.1 that the relative error tends to zero, and this
is supported by the last line of the table. On the other hand, the absolute
error tends to infinity and is already about 30,000 for n = 10. O

The following example provides another result, which will be used later.
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1.2 Embedding sequences 9

situation by embedding it in a suitable sequence of situations. We shall il-
lustrate this process by obtaining two different approximations for binomial
probabilities corresponding to two different embeddings.

The probability of obtaining z successes in n binomial trials with success
probability p is

(1.2.1) P,(z) = (Z)p’q"" where g =1-p.

n
Suppose that n is even and that we are interested in the probability P, (5)

of getting an even split between successes and failures. It seems reasonable
to expect that this probability will tend to 0 as n — oo and that it will be
Jarger when p = 1/2 than when it is # 1/2.

To get a more precise idea of this behavior, let us apply Stirling’s formula
(1.1.26) to the three factorials in :

P (3) = (—E)T_'(Ey ().

2 2
After some simplification, this leads to {Problem 2.1)

(122 Pu(2) )2 o= (Vi)

We must now distinguish two cases.

Case 1. p = 1/2. Here we are asking for an even split between heads and
tails in n tosses with a fair coin. The third factor in (1.2.2) is then 1, and
we get the simple approximation

(1.2.3) P, (;—l) ~ \/—72r: —\71_—12 when p =1/2.

This result confirms the conjecture that the probability tends to 0 as n —
0o. The exact values of P, (g) and the approximation (1.2.3) are shown

in Table 1.2.1 for varying n.

TABLE 1.2.1. P, (g) for p=1/2

n 4 20 100 500 1,000 10,000
Exact | .375 .176 .0796 0357 .0252 .00798
(1.2.3) | .399 .178 .0798 .0357 .0252 .00798

A surprising feature of the table is how slowly the probability decreases.
Even for n = 10,000, the probability of an exactly even 5,000-5,000 split
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is not much below .01. Qualitatively, this could have been predicted from
(1.2.3) because of the very slow increase of v/n as a function of n. The table
indicates that the approximation is highly accurate for n > 20.

Case 2. p # 1/2. Since +/dpg < 1 for all p # 1/2 (Problem 2.2), the approx-
imate probabilities (1.2.3) for p = 1/2 are multiplied by the nth power of a
number between 0 and 1 when p # 1/2. They are therefore greatly reduced
and tend to 0 at a much faster rate. The exact values of P, (ﬁ) and the

2
approximation (1.2.2) are shown in Table 1.2.2 for the case p = 1/3. Again,

TABLE 1.2.2. P, (g) forp=1/3

n 4 20 100 1,000 10,000
Exact | .296 .0543 .000220 6.692 x 10~ 1.378 x 10~>>°
(2.2) | .315 .0549 .000221 6.694 x 10~2%  1.378 x 10728

the approximation is seen to be highly accurate for n > 20.

A comparison of the two tables shows the radical difference in the speed
n
with which P, (— tends to O in the two cases.

So far we have restricted attention to the probability of an even split,
. . ..z 1 .
that is, the case in which ~ = . Let us now consider the more general

n
case that z/n has any given fixed value o (0 < a < 1), which, of course,
requires that an is an integer. Then

n n
P — a l-a
n (2) (an) (p7q'™%)
and application of Stirling’s formula shows in generalization of (1.2.2) that

(Problem 2.3)

(1.2.4) P, (an) ~

1 1,
V2ra(l—a) . %7

with

(1.2.5) y= (g)a (%)1_0'

As before, there are two cases.

Case 1. p = «. This is the case in which p is equal to the frequency of
success, the probability of which is being evaluated. Here v = 1 and (1.2.4)
reduces to

(1.2.6) P, (an) ~ when p = a.

1
27ra(1—a)‘ﬁ



