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Preface

In the introduction to the first volume of The Arithmetic of Elliptic Curves
(Springer-Verlag, 1986), I observed that “the theory of elliptic curves is
rich, varied, and amazingly vast,” and as a consequence, “many important
topics had to be omitted.” I included a brief introduction to ten additional
topics as an appendix to the first volume, with the tacit understanding that
eventually there might be a second volume containing the details. You are
now holding that second volume.

Unfortunately, it turned out that even those ten topics would not fit
into a single book, so I was forced to make some choices. The following
material is covered in this book:

I. Elliptic and modular functions for the full modular group.
II. Elliptic curves with complex multiplication.
III. Elliptic surfaces and specialization theorems.
IV. Néron models, Kodaira-Néron classification of special fibers,
Tate’s algorithm, and Ogg’s conductor-discriminant formula.
V. Tate’s theory of g-curves over p-adic fields.
VI. Néron'’s theory of canonical local height functions.

So what’s still missing? First and foremost is the theory of modular
curves of higher level and the associated modular parametrizations of ellip-
tic curves. There is little question that this is currently the hottest topic
in the theory of elliptic curves, but any adequate treatment would seem to
require (at least) an entire book of its own. (For a nice introduction, see
Knapp [1].) Other topics that I have left out in order to keep this book
at a manageable size include the description of the image of the ¢-adic
representation attached to an elliptic curve and local and global duality
theory. Thus, at best, this book covers approximately half of the material
described in the appendix to the first volume. I apologize to those who may
feel disappointed, either at the incompleteness or at the choice of particular
topics.

In addition to the complete areas which have been omitted, there are
several topics which might have been naturally included if space had been
available. These include a description of Iwasawa theory in Chapter II,
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the analytic theory of p-adic functions (rigid analysis) in Chapter V, and
Arakelov intersection theory in Chapter VI.

It has now been almost a decade since the first volume was written.
During that decade the already vast mathematical literature on elliptic
curves has continued to explode, with exciting new results appearing with
astonishing rapidity. Despite the many omissions detailed above, I am
hopeful that this book will prove useful, both for those who want to learn
about elliptic curves and for those who hope to advance the frontiers of our
knowledge. I offer all of you the best of luck in your explorations!

Computer Packages

There are several computer packages now available for performing compu-
tations on elliptic curves. PARI and SIMATH have many built-in elliptic
curve functions, there are packages available for commercial programs such
as Mathematica and Maple, and the author has written a small stand-alone
program which runs on Macintosh computers. Listed below are addresses,
current as of March 1994, where these packages may be acquired via anony-
mous ftp.

PARI (includes many elliptic curve functions)
math.ucla.edu 128.97.4.254
megrez.ceremab.u-bordeaux.fr 147.210.16.17
(directory pub/pari)
(unix, mac, msdos, amiga versions available)
SIMATH (includes many elliptic curve functions)
ftp.math.orst.edu
ftp.math.uni-sb.de
apecs (arithmetic of plane elliptic curves, Maple package)
math.mcgill.ca 132.206.1.20
(directory pub/apecs)
Elliptic Curve Calculator (Mathematica package)
Elliptic Curve Calculator (stand-alone Macintosh program)
gauss.math.brown.edu 128.148.194.40
(directory dist/EllipticCurve)
A description of many of the algorithms used for doing computations on
elliptic curves can be found in H. Cohen [1, Ch. 7] and Cremona [1].
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Introduction

In the first volume of The Arithmetic of Elliptic Curves, we pre-
sented the basic theory culminating in two fundamental global results,
the Mordell-Weil theorem on the finite generation of the group of rational
points and Siegel’s theorem on the finiteness of the set of integral points.
This second volume continues our study of elliptic curves by presenting six
important, but somewhat more specialized, topics.

We begin in Chapter I with the theory of elliptic functions and modular
functions for the full modular group I'(1) = SL2(Z)/{£1}. We develop this
material in some detail, including the theory of Hecke operators and the L-
series associated to cusp forms for I'(1). Chapter II is devoted to the study
of elliptic curves with complex multiplication. The main theorem here
states that if K/Q is a quadratic imaginary field and if E/C is an elliptic
curve whose endomorphism ring is isomorphic to the ring of integers of K,
then K(j(E)) is the Hilbert class field of K; and further, the maximal
abelian extension of K is generated by j(E) and the z-coordinates! of the
torsion points in E(C). This is analogous to the cyclotomic theory, where
the maximal abelian extension of Q is generated by the points of finite
order in the multiplicative group C*. At the end of Chapter II we show
that the L-series of an elliptic curve with complex multiplication is the
product of two Hecke L-series with Grossencharacter, thereby obtaining at
one stroke the analytic continuation and functional equation.

The common theme of Chapters III and IV is one-parameter families
of elliptic curves. Chapter III deals with the classical geometric case, where
the family is parametrized by a projective curve over a field of characteristic
zero. Such families are called elliptic surfaces. Thus an elliptic surface
consists of a curve C, a surface €, and a morphism 7 : € — C such that
almost every fiber 7~1(¢t) is an elliptic curve. The set of sections

{maps o : C — € such that moo(t) =t}

t If j(E) = 1728 or j(E) = 0, one has to use z2 or z* instead of z.
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to an elliptic surface forms a group, and we prove an analogue of the
Mordell-Weil theorem which asserts that this group is (usually) finitely
generated. In the latter part of Chapter III we study canonical heights
and intersection theory on £ and prove specialization theorems for both
the canonical height and the group of sections.

Chapter IV continues our study of one-parameter families of ellip-
tic curves in a more general setting. We replace the base curve C by a
scheme S = Spec R, where R is a discrete valuation ring. The generic fiber
of the arithmetic surface € — S is an elliptic curve E defined over the
fraction field K of R, and its special fiber is a curve € (possibly singular,
reducible, or even non-reduced) defined over the residue field k£ of R. We
prove that if € — S is a minimal proper regular arithmetic surface whose
generic fiber is E, and if we write € for the part of € that is smooth over S,
then € is a group scheme over S and satisfies Néron’s universal mapping
property. In particular, E(K) = E(R); that is, every K-rational point on
the generic fiber E extends to an R-valued point of €. We also describe the
Kodaira-Néron classification of the possible configurations for the special
fiber € and give Tate’s algorithm for computing the special fiber. At the
end of Chapter IV we discuss the conductor of an elliptic curve and prove
(some cases of) Ogg’s formula relating the conductor, minimal discrimi-
nant, and number of components of C.

In Chapter V we return to the analytic theory of elliptic curves. We
begin with a brief review of the theory over C, which we then use to analyze
elliptic curves defined over R. But the main emphasis of Chapter V is on
elliptic curves defined over p-adic fields. Every elliptic curve E defined
over C is analytically isomorphic to C*/¢% for some ¢ € C*. Similarly,
Tate has shown that if E is defined over a p-adic field K and if the j-
invariant of E is non-integral, then E is analytically isomorphic to K*/q%
for some ¢ € K*. (It may be necessary to replace K by a quadratic
extension.) Further, the isomorphism E(K) = K*/q” respects the action
of the Galois group Gk, a fact which is extremely important for the
study of arithmetic questions. In Chapter V we describe Tate’s theory
of g-curves and give some applications.

The final chapter of this volume contains a brief exposition of the
theory of canonical local height functions. These local heights can be used
to decompose the global canonical height described in the first volume
[AEC, VIII §9]. We prove the existence of canonical local heights and give
explicit formulas for them. Local heights are useful in studying some of the
more refined properties of the global height.

As with the first volume, this book is meant to be an introductory text,
albeit at an upper graduate level. For this reason we have occasionally made
simplifying assumptions. We mention in particular that in Chapter II we
restrict attention to elliptic curves whose ring of complex multiplications
is integrally closed; in Chapter III we only consider elliptic surfaces over
fields of characteristic 0; and in Chapter IV we assume that all Dedekind
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domains and discrete valuation rings have perfect residue fields. Pogsibly
it would be preferable not to make these assumptions, but we feel that the
loss of generality is more than made up for by the concomitant clarity of
the exposition.

Prerequisites

The main prerequisite for reading this book is some familiarity with the ba-
sic theory of elliptic curves as described, for example, in the first volume.
Beyond this, the prerequisites vary enormously from chapter to chapter.
Chapter I requires little more than a first course in complex analysis. Chap-
ter II uses class field theory in an essential way, so a brief summary of class
field theory has been included in (II §3). Chapter I1I requires various clas-
sical results from algebraic geometry, such as the theory of surfaces and
the theory of divisors on varieties. As always, summaries, references. and
examples are supplied as needed.

Chapter IV is technically the most demanding chapter of the book.
The reader will need some acquaintance with the theory of schemes, such
as given in Hartshorne [1, Ch. II] or Eisenbud-Harris [1]. But beyond that,
there are portions of Chapter IV, especially IV §6, which use advanced
techniques and concepts from modern algebraic geometry. We have at-
tempted to explain all of the main points, with varying degrees of precision
and reliance on intuition, but the reader who wants to fill in every detail
will face a non-trivial task. Finally, Chapters V and VI are basically self-
contained, although they do refer to earlier chapters. More precisely, the
interdependence of the chapters of this book is illustrated by the following
guide:

. Ch. I1
Ch. VI lCh. ) 0 eete A U i .94
i A

The dashed line connecting Chapter III to Chapter IV is meant to indicate
that although there are few explicit cross-references, mastery of the subject
matter of Chapter III will certainly help to illuminate the more difficult
material covered in Chapter IV.

References and Exercises

The first volume of The Arithmetic of Elliptic Curves (Springer-Verlag,
1986) is denoted by [AEC], so for example [AEC, VIIL.6.7] is Theorem 6.7
in Chapter VIII of [AEC]. All other bibliographic references are given by
the author’s name followed by a reference number in square brackets, for
example Tate (7, theorem 5.1]. Cross-references within the same chapter
are given by number in parentheses, such as (3.7) or (4.5a). References
from within one chapter to another chapter or appendix are preceded by
the appropriate Roman numeral or letter, as in (IV.6.1) or (A §3). Exercises
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appear at the end of each chapter and are numbered consecutively, so, for
example, exercise 4.23 is the 23" exercise at the end of Chapter IV.

Just as in the first volume, numerous exercises have been included at
the end of each chapter. The reader desiring to gain a real understanding of
the subject is urged to attempt as many as possible. Some of these exercises
are (special cases of) results which have appeared in the literature. A list
of comments and citations for the exercises will be found at the end of the
book. Exercises marked with a single asterisk are somewhat more difficult,
and two asterisks signal an unsolved problem.

Standard Notation
Throughout this book, we use the symbols

Z, Q, R, C, Fg, and Z,

to represent the integers, rational numbers, real numbers, complex num-
bers, field with g elements, and p-adic integers respectively. Further, if R
is any ring, then R* denotes the group of invertible elements of R; and if A
is an abelian group, then A[m] denotes the subgroup of A consisting of all
elements with order dividing m. A more complete list of notation will be
found at the end of the book.




CHAPTER 1

Elliptic and Modular Functions

In most of our previous work in [AEC], the major theorems have been of
the form “Let E/K be an elliptic curve. Then E/K has such-and-such
a property.” In this chapter we will change our perspective and consider
the set of elliptic curves as a whole. We will take the collection of all
(isomorphism classes of) elliptic curves and make it into an algebraic curve,
a so-called modular curve. Then by studying functions and differential
forms on this modular curve, we will be able to make deductions about
elliptic curves. Further, the Fourier coefficients of these modular functions
and modular forms turn out to be extremely interesting in their own right,
especially from a number-theoretic viewpoint. We will be able to prove
some of their properties in the last part of the chapter.

This chapter thus has two main themes, each of which provides a
paradigm for major areas of current research in number theory and alge-
braic geometry. First, when studying a collection of algebraic varieties or
algebraic structures, one can often match the objects being studied (up
to isomorphism) with the points of some other algebraic variety, called a
moduli space. Then one can use techniques from algebraic geometry to
study the moduli space as a variety and thereby deduce facts about the
original collection of objects. A subtheme of this first main theme is that
the moduli space itself need not be a projective variety, so a first task is to
find a “natural” way to complete the moduli space.

Our second theme centers around the properties of functions and dif-
ferential forms on a moduli space. Using techniques from algebraic geom-
etry and complex analysis, one studies the dimensions of these spaces of
modular functions and forms and also gives explicit Laurent, Fourier, and
product expansions. Next one uses the geometry of the objects to define
linear operators (called Hecke operators) on the space of modular forms,
and one shows that the Hecke operators satisfy certain relations. One then
takes a modular form which is a eigenfunction for the Hecke operators
and deduces that the Fourier coefficients of the modular form satisfy the
same relations. Finally, one reinterprets all of these results by associating
an L-series to a modular form and showing that the L-series has an Euler
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product expansion and analytic continuation and that it satisfies a func-
tional equation.

§1. The Modular Group

Recall [AEC VI1.3.6] that a lattice A C C defines an elliptic curve E/C via \
the complex analytic map
C/A — EA(C) : y* = 42° — goz — g3
z+— (p(z;A), 9 (2; ).

p(z;A) = +Z(Z_w)2 WIQ)

wEA
w#0

is the Weierstrass p-function relative to the lattice A. (See [AEC VI,§3].)
Further, if A; and A; are two lattices, then we have

Here

Ep, Ec Ep, if and only if A; and A, are homothetic.

(See [AEC VI.4.1.1]. Recall A; and Ay are homothetic if there is a num-
ber ¢ € C* such that A; = cA,.)

Thus the set of elliptic curves over C is intimately related to the set
of lattices in C, which we denote by L:

L = {lattices in C}.
We let C* act on £ by multiplication,
cA = {cw : w € A}.
Then the above discussion may be summarized by saying that there is an
injection
{elliptic curves defined over C}
C-isomorphism

L/C* —

Accordmg to the Uniformization Theorem for Elliptic Curves (stated
but not proven in [AEC VL.5.1]), this map is a bijection. One of our goals
in this chapter is to prove this fact (4.3). But first we will need to describe
the set L/C* more precisely. We will put a complex structure on £/C*,
and ultimately we will show that L/C* is isomorphic to C.

Let A € L. We can describe A by choosing a basis, say

A = Zw, + Zuw,.

Switching w; and w; if necessary, we always assume that the pair (wg,w;)
gives a positive orientation. (That is, the angle from w; to w; is positive
and between 0° and 180°. See Figure 1.1.)
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An Oriented Basis for the Lattice A
Figure 1.1

Since we only care about A up to homothety, we can normalize our
basis by looking instead at

PR LN
wo %]

Our choice of orientation implies that the imaginary part of w; /w, satisfies
Im(w; /we) > 0,
which suggests looking at the upper half-plane
H={reC:Im(r) > 0}.
We have just shown that the natural map

H—L/C,
T— A, =Z7+Z

is surjective. It is not, however, injective. When do two 7’s give the same
lattice? We start with an easy calculation.
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Lemma 1.1. Leta,b,c,d€R,7€C, 1 ¢ R. Then

Im (ar +b) _ (ad - bc) Im(r).

er+d)  er+dJ?

PROOF. Let 7 = s+it. Multiplying numerator and denominator by c¢7+d,
we find

ar +b _ {ac|r]? + (ad + bc)s + bd} + {(ad - be)t}i
et +d ler + d)? g

EJ
The ambiguity in associating a 7 € H to a lattice A lies in choosing an
oriented basis for A. Suppose that we take two oriented bases,

A = Zw, + Zwy = Ty + Zuws,.

Then there are integers a,b,c,d,a’,b’, ¢, d’' so that
w) = aw; + bwo, w1 = a'w] + bwj,
wy =cwy +dws,  wy=cw)+dwh.

Substituting the left-hand expressions into the right-hand ones and using
the fact that w; and w, are R-linearly independent, we see that

a b\ [(a ¥\_ (10
et dyl\ el N
Fﬁrther, using .Lemma 1.1 (with 7 = w;/wy) and the fact that our
bases are oriented, we find that

wi) aw; +bwy\ _ (ad — be) Im(w; /w2)
g (%) s (wl + dwz) C le(wi/wg) +d?

and so
ad — be > 0.

In other words, the matrix (g 2) is in the special linear group over Z,

-

((cl 3) € SL2(Z) = {(: ?) ta,B3,7,6 €Z,ab - By = 1}.

This proves the first half of the following lemma.




