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Introduction

Quantum groups first arose in the physics literature, particularly in the work
of L. D. Faddeev and the Leningrad school, from the ‘inverse scattering
method’, which had been developed to construct and solve ‘integrable’ quan-
tum systems. They have excited great interest in the past few years because
of their unexpected connections with such, at first sight, unrelated parts of
mathematics as the construction of knot invariants and the representation
theory of algebraic groups in characteristic p.

In their original form, quantum groups are associative algebras whose defin-
ing relations are expressed in terms of a matrix of constants (depending on the
integrable system under consideration) called a quantum R-matrix. It was
realized independently by V. G. Drinfel’d and M. Jimbo around 1985 that
these algebras are Hopf algebras, which, in many cases, are deformations of
‘universal enveloping algebras’ of Lie algebras. A little later, Yu. I. Manin
and S. L. Woronowicz independently constructed non-commutative deforma-
tions of the algebra of functions on the groups SLz(C) and SU;, respectively,
and showed that many of the classical results about algebraic and topological
groups admit analogues in the non-commutative case.

Thus, although many of the fundamental papers on quantum groups are
written in the language of integrable systems, their properties are accessible
by more conventional mathematical techniques, such as the theory of topo-
logical and algebraic groups and Lie algebras. Our aim in this book is to
present the theory of quantum groups from this latter point of view. In fact,
we shall concentrate on the study of the ‘Lie algebras’ of quantum groups,
which seems to be the approach which has proved most powerful, particularly
in applications, but we shall also discuss, in rather less detail, their relation
with ‘non-commutative algebraic geometry and topology’.

We shall now describe what a quantum group is, beginning by trying to
explain the motivation for the use of the adjective ‘quantum’.

In classical mechanics, the phase space M of a dynamical system is a Pois-
son manifold. This means that the space F(M) of (differentiable) complex-
valued functions on M is equipped with a Lie bracket { , } : F(M)xF(M) —
F(M) (satisfying certain additional conditions), called the Poisson bracket.
The dynamical equations defining the time evolution of the system are equiv-
alent to the equations

LHm(®) = (Ha, FHom(®)
for f € F(M), where M, is a fixed function on M called the (classical)
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hamiltonian, and m(t) € M is the ‘state’ of the system at time ¢. For example,
for a single particle moving along the real line, M is the cotangent bundle
T*(R), and if ¢ is the coordinate on R (‘position’) and p the coordinate in
the fibre direction (‘momentum’), the Poisson bracket is

_onon _onon
{fi,f2} = 5 ¢ Op Oq

In particular, the Poisson bracket of the coordinate functions is

(1) {p,q} =1

In quantum mechanics, the space M is replaced by the set of rays in a com-
plex Hilbert space V', and the space F(M) of functions on M by the algebra
Op(V) of (not necessarily bounded) operators on V., The time evolution of

an operator A is given by
dA

7 [Hqu, 4]
for some operator Hqy € Op(V), called the (quantum) hamiltonian. For
example, in the case of a single particle moving along the real line, V is the
space LZ(R) of square-integrable functions of ¢, and the operators P and Q
corresponding to the coordinate functions p and ¢ are given by

(7]
P=— —lha—q, @ = multiplication by g,
where h is 1/2n times Planck’s constant. Note that

2 [P,Q] = —v~1hidy.

The question is: how to pass from the classical to the quantum description
of a system. This is the problem of quantization. Ideally, one would like a
map Q@ which assigns to each function f € F(M) an operator Q(f) on V.
Moreover, since time evolution in the classical and quantum descriptions is
given by taking the Poisson bracket and commutator with the hamiltonian,
respectively, @ should satisfy the relation

Q{f, f2} = LQ%&:’_;_Q_I(’;L)]

(the normalization comes from (1) and (2)). Unfortunately, it is known that,
even for the simplest case of a single particle moving along the real line, no
such map @ exists.

There is, however, an alternative formulation of the quantization problem,
introduced by J. E. Moyal in 1949. This begins by noting that the fun-
damental difference between the classical and quantum descriptions is that
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F(M) is a commutative algebra, whereas Op(V') is non-commutative (when
dim(V) > 1). Moyal's idea is to try to reproduce the results of quantum
mechanics by replacing the usual product on F(M) by a non-commutative
product *j, depending on a parameter h, such that *, becomes the usual
product as h — 0, just as ‘quantum mechanics becomes classical mechanics
as Planck’s constant tends to zero’, and such that

3) lim J1*n f2 fa*n 1 = {1, fa}.
h—0 h

If we think of (M) with the Moyal product *, as a non-commutative alge-
bra of functions (M), we find ourselves in the realm of non-commutative
geometry in the sense of A. Connes. The philosophy here is that any ‘space’
is determined by the algebra of functions on it (with the usual product). For
example, every affine algebraic variety over € is determined (up to isomor-
phism) by the commutative algebra of regular functions on it, whereas every
compact topological space is determined by its commutative C*-algebra of
complex-valued continuous functions. More precisely, the category of ‘spaces’
in these examples is dual to the category of the corresponding algebras. Thus,
a non-commutative algebra should be viewed as the space of functions on a
‘non-commutative space’, and we can say that Moyal’s construction gives a
deformation of the classical phase space M to a family of non-commutative
(or ‘quantum’) spaces Mj, such that Fj,(M) is the algebra of functions on
M.

The category of quantum spaces, then, might be defined as the category
dual to the category of associative, but not necessarily commutative, algebras.
To define the notion of a quantum group, let us first return for a moment to
the classical situation. If G is a group, the multiplication p : G x G —» G
of G induces & homomorphism u* = A : F(G) — F(G x G) of algebras
of functions. Now, if we define the algebra F(G) and the tensor product
appropriately, F(G x G) will be isomorphic to F(G) ® F(G) as an algebra.
For example, if G is an affine algebraic group over €, and F(G) is the algebra
of regular functions on G, the ordinary algebraic tensor product will do.
Thus, we have a comultiplication A : F(G) — F(G) ® F(G). (The reason
for this terminology is that the multiplication on F(G) can be viewed as a
map F(G) ® F(G) — F(G).) Similarly, the inverse map ¢ : G — G induces
a map * = S : F(G) — F(G), called the antipode, and evaluation at the
identity element of G is a homomorphism ¢ : F(G) — €, called the counit.
The maps A, S and ¢ satisfy certain compatibility properties which reflect
the defining properties of the inverse and the associativity of multiplication
in G, and combine to give F(G) the structure of a Hopf algebra.

We might therefore define the category of quantum groups to be the category
dual to the category of (not necessarily commutative) Hopf algebras. (We said
‘might’ here, and in our tentative definition of a quantum space, because,
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to ensure that the categories of quantum spaces and quantum groups have
reasonable properties, it would be necessary to impose some restrictions on
the class of algebras which are acceptable as ‘quantized algebras of functions’.
Manin suggests that one should work with ‘Koszul algebras’, but we shall not
discuss this point here.) As is common practice in the literature, we shall
often abuse terminology by referring to a Hopf algebra itself as a quantum
group.

As the preceding discussion suggests, one way to try to construct non-
classical examples of quantum groups is to look for deformations, in the cat-
egory of Hopf algebras, of classical algebras of functions F(G). Just as the
classical Poisson bracket can be recovered as the ‘first order part’ of Moyal'’s
deformation (see (3)), so it turns out that the existence of a deformation
Fn(G) of F(G) automatically endows the group G itself with extra struc-
ture, namely that of a Poisson-Lie group. This is a Poisson structure on G
which is compatible with the group structure in a certain sense. Conversely,
to construct deformations of F(G), it is natural to begin by describing the
possible Poisson-Lie group structures on G and then to attempt to extend
these ‘first order deformations’ to full deformations. This is the approach
taken in this book. Poisson—Lie groups are also of interest in their own right,
for they form the natural setting for the study of classical integrable systems
with symmetry.

There is another Hopf algebra associated to any Lie group G, namely the
universal enveloping algebra U(g) of its Lie algebra g. This is essentially the
dual of F(G) in the category of Hopf algebras. In general, the vector space
dual A* of any finite-dimensional Hopf algebra A is also a Hopf algebra: the
multiplication A* ® A* — A* is dual to the comultiplication A: 4 - A® A
of A, and the comultiplication of A* is dual to the multiplication of A. Note
that A* is commutative if and only if A is cocommutative, i.e. if and only if
A(A) is contained in the symmetric part of A® A. If, as is usually the case
in examples of interest, A is infinite dimensional, this duality often continues
to hold provided the dual and tensor product are defined appropriately. To
a deformation F4(G) of F(G) through (not necessarily commutative) Hopf
algebras therefore corresponds a deformation U, (g) of U(g) through (not
necessarily cocommutative) Hopf algebras.

In fact, only non-cocommutative deformations of U(g) are of interest, since
any deformation of U(g) through cocommutative Hopf algebras is necessarily
of the form U(gs) for some deformation g5, of g through Lie algebras. How-
ever, many interesting Lie algebras have no non-trivial deformations. This is
the case, for example, if g is a (finite-dimensional) complex semisimple Lie al-
gebra, such as the Lie algebra sl2(C) of 2 x 2 complex matrices of trace zero.
This follows from the fact that the condition of semisimplicity is open, so
that any small deformation of g will still be semisimple, whereas the semisim-
ple Lie algebras are discretely parametrized (by their Dynkin diagrams, for
example).
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The first example of a non-cocommutative deformation of this type was
discovered by P. P. Kulish and E. K. Sklyanin in 1981 in the case g = si3(C)
(although the importance of its Hopf structure was not realized until later).
Note that sly(C) has a basis

o =) -0 m-( L),

whose Lie brackets are given by

(5a) X+, X" 1=H, [H X*=x2X*

The comultiplication is given on these basis elements by

(5b) AH)=H®1+10H, AX*H)=X*@®1+1@X*%,

an assignment which extends uniquely to an algebra homomorphism A :
U(slz(C)) — U(slz(T)) ® U(slz(C)). The deformation Uy(slz(€)) is gener-
ated by elements H, X*, which satisfy the relations

hH hH

(6s) XX —Xxx+=9%__¢

—— ——, HX*_X*g = t2x%.
eh _e—h

It has a non-cocommutative comultiplication given on generators by

6b AHy=H®1+1QH,
(6b) AX)=Xt@eHr19Xt, AX )=X"®l+eHgXx .
Formally, at least, it is clear that (6a) and (6b) go over into (5a) and (5b) as
h — 0. The Hopf algebra defined in (6a,b) is called ‘quantum sla(C)’. (See
Chapter 6 for the formulas for the antipode and counit of Uy(slz(C)), and
for a way to make sense of expressions such as ehH.)

The Hopf algebra dual to Uy (sla(T)), the ‘algebra Fj, (S Lz (C)) of functions
on quantum SL(C)’, was discovered by L. D. Faddeev and L. A. Takhtajan
in 1985. It is the associative algebra generated by elements a, b, ¢, d with the
following multiplicative relations:

(N ab=e"Mba, ac=e"Pca, bd=e"db, cd=e"dc,
(8) bc=cb, ad—da+ (e"* —e?)bc =0,
(9) ad—e *be =1,

and comultiplication

A(e)=a®a+b®c, A(b)=a®b+b®d,



