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V — Differential and Integral Calculus

§ 1. The Riemann integral — § 2. Integrability conditions —

§ 8. The “Fundamental Theorem” (FT) - §|4. Integration by parts -
§ §5. Taylor’s formula — § 6. The change of variable formula —

§ 7. Generalised Riemann integrals — § 8. Approzimation Theorems —
§ 9. Radon Measures on R or C - § 10. Schwartz distributions

§ 1. The Riemann Integral

The theory of integration expounded in this Chapter dates from the XIXth
century; it was, and remains, of great use in classical mathematics, and its
simplicity has rewarded all who have written for beginners in the subject.
For professional mathematicians it has been dethroned by the much more
powerful, and in some respects simpler, theory invented by Henri Lebesgue
around 1900, and perfected in the course of the first half of the XXt century
by dozens of others; we present a small part of it in the Appendix to this
Chapter. The “Riemann” theory expounded in this Chapter therefore has
only a pedagogic interest.

1 — Upper and lower integrals of a bounded function

Let us first recall the definitions of Chap. II, n°® 11.

A scalar (i.e. complex-valued) function ¢ defined on a compact, or more
generally, bounded, interval I is said to be a step function if one can find a
partition (Chap. I) of I into a finite number of intervals I such that ¢ is
constant on each I; no conditions are imposed on the I. Such a partition
will be said to be adapted to ¢.

When I = (a,b) this is the same as requiring the emstence of a finite
sequence of points of I satisfying

(1.1) a=$1S$25...S.’E"+1=b

and such that ¢ is constant on each open interval |zk,zi+1[, because the
values it takes at a point z; have no connection with those it takes to the
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right, or left of this point, and are irrelevant to the calculation of traditional
integrals!.

A sequence of points satisfying (1) is called a subdivision of the interval I.
A subdivision by the points y;, is said to be finer than the subdivision (1)
when the z; appear among the 3, in other words when the second subdivi-
sion is obtained by subdividing each of the component intervals in (1). The
definition is similar for two partitions (It) and (J3) of I: the second is said
to be finer than the first if every Jp, is contained in one of the I, in other
words if the second partition of I is obtained by partitioning each of the I
themselves into intervals (namely, those J), contained in Ii).

If o(x) = ax for every z € I one calls the number

(1.2) m(p) =Y axm(Ix) =Y _ p(&)m(Ix)

the integral of ¢ over I, where, for every interval J = (u,v), the number
m(J) = v — u denotes the length or measure of J, and where & is any point
of Ii. Since the Ij of zero measure do not matter in (2) one can replace the
partition by a subdivision (1) and write

(1.3) m(<p) = Z‘P(&k)(itlﬂ-l - :Ek) with zx < €k < Tk

since ¢ is constant, so equal to p(&), on |zk, Te41[.

Since there are infinitely many ways of choosing the Iy — every finer
partition, for example, will equally be adapted to calculating the integral —,
we have to show that the sum (2) does not depend on the choice of the I. So
let (J») be another partition of I into intervals such that ¢(z) = by, for every
z € J. Since each I}, is the union of the pairwise disjoint intervals Iy N Jp,
as is shown by the relation

X=XxnI=XnJh=JXN,

valid for every subset X of I, we have
m(Ik) = Zm(Ik N Jh)
h

and similarly
m(Jh) = Em(lk N Jh)
k

where, by convention, m(#) = 0. Thus

(1.4) Zakm(Ik) = Zakm(IkﬂJh),
(1.5) > bwm(dn) = > bam(Ix N Jn),

! This is not the same in generalisations of the classical theory. See n°® 30.
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where, on the right hand sides, we sum over all the pairs (k, k). We thus have
only to prove that

m(Iy N Jp) # 0 implies ax = by,

which is clear: on Iy N Jj,, which is nonempty since its length is not zero, the
function ¢ is equal simultaneously to ax and to by.
This argument shows immediately that

(1.6) m(Ap + pyp) = Am(p) + pm(y)

for any step functions ¢ and 3 and constants A and u: consider partitions
(Ix) and (Ji) of I adapted to ¢ and ¢, write ax for the value of ¢ on I and
by for that of ¢ on J3, and calculate the integrals of ¢, 1 and A + ut) using
the intervals Ix N Jj, on which @, 1 and Ap + ut are equal respectively to ay,
bn and Aay + pbp; in effect we are adding the relations (4) and (5), multiplied
respectively by A and u, term-by-term.

Since it is clear that the integral of a positive function (i.e. one whose
values are all positive) is positive, we see that

(1.7) <% implies m(p) <m(y)
for real-valued ¢ and 1, since m(v) —m(p) = m(y—¢) > 0 by (6) and Yy — ¢
is positive.

Finally, the triangle inequality applied to (2) shows that

Im(p)l < 3 le(€)Im(Ie) = m(lel) < 3 llollrm(Ii)

always, where, as in Chap. III, n° 7, we write in a general way that

Ifllz = sup|f(z)|.
z€l

Since " m(I;) = m(I) we finally obtain the inequality
(1.8) Im()] < m(le]) < m(Dllellr-

This completes the “theory” of integration as it applies to step functions.
It rests on two properties of lengths which are the starting point for all later
generalisations:

(M 1): the measure of an interval is positive;
(M 2): measure is additive, i.e. if an interval J is the union of a finite number
of pairwise disjoint intervals J then m(J) = Y m(J).

There are many other interval-functions which have these properties. One
can, for example, choose a continuous function u(z) which is increasing in
the wide sense on I and put?

2 For an arbitrary increasing function one has to take account of its discontinuities
and modify the formula to obtain a reasonable theory. See n° 32 on Stieltjes
measures.
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#(J) = p(v) — p(u) if J = (u,v).

One can also take a finite or countable set D C I and assign to each £ € D
a “mass” c(§) > 0, with }_ ¢(€) < 400, and then put

w(J) = c(€)

geJ

for every interval J, so that the measure of a singleton interval can very well
be > 0; in this example property (M 2) reduces to the associativity formula
for absolutely convergent series. We obtain discrete measures in this way.

For a “measure” y satisfying (M 1) and (M 2) the integral of a step func-
tion is, by definition, the number u(¢p) given by the formula (2), replacing
the letter m by the letter u. For a discrete measure, one clearly finds that
p(p) = 3 c(€)p(€), summing over all the £ € D. These generalisations will
be studied at the end of this chapter, but the reader may be interested to ob-
serve, every time we use the traditional integral, those results which depend
only on the properties (M 1) and (M 2) of “Euclidean” or “Archimedean”
measure, or, as one now calls it, of “Lebesgue measure” (since it was for
this that Lebesgue constructed his grand integration theory) because these
properties extend to the general case. Certain results which, on the contrary,
use the explicit construction starting from the usual measure, mainly concern
the relations between integrals and derivatives, Fourier series and integrals,
partial differential equations, almost all applications to physical sciences, etc.
‘They rest on an obvious though fundamental property of the usual measure:
it is invariant under translation; see below, (2.20).

Now let us pass on to arbitrary bounded real functions on a bounded
interval I (in general compact).

Given a bounded real-valued function f on I there exist step functions,
even constant functions, ¢ and %, such that ¢ < f < 9, ie. p(z) < f(z) <
Y(x) for every z € I. By (7) we must have m(p) < m(v), and every rea-
sonable definition of m(f) must satisfy m(p) < m(f) < m(v). We therefore
examine the lower and upper integrals of f over I defined by the formulae

(L9) m.(f) = 21;§m(¢), m*(f) = Inf m(y)

where ¢ and v range over the sets of step functions such that ¢ < f < 1.

As we have seen in Chap. II, n° 11, we have m.(f) < m*(f) since every
number m(yp) is less than the m(v), so is less than their lower bound m*(f),
which, larger than all the m(y), is also larger than their upper bound m, (f).
Since the constant functions equal to —| f||; and +| f||; feature among the
functions y and 1 respectively, we even have

(1.10) —m(Dfllr < ma(f) <m*(f) < m(D)||f]Ir.
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Relation (6) does not extend to the lower and upper integrals of arbitrary
functions; if it did, the theory of integration would finish with n° 2 of this
chapter. However, we always have the inequalities

(L11) mu(f +9) Zmu(f) +mulg),  m*(f +g) < m*(f) + m*(g).

Among the step functions less than f + g are the sums ¢ + 1, where ¢ is less
than f and where 9 is less than g; consequently, m.(f + g) is greater than
all the numbers of the form m(yp + %) = m(yp) + m(v). It remains to note
that if A and B are two sets of real numbers, and if one writes A + B for the
set of numbers = + y where z € A and y € B, then

sup(A + B) = sup(A) + sup(B)

with a similar relation for the lower bounds (exercise!), so that every number
larger than the z+y is larger than sup(A)+sup(B). Whence the first relation
(11). The second is proved in the same way, reversing the inequalities.

It is easier to show that

(1.12) m.(cf) = em.(f), m*(cf) = em*(f) for every ¢ > 0
and

(1.13) mu(=f) = —m"(f);

it is enough to note that multiplication by —1 transforms the step functions
below f into those above — f.

2 — Elementary properties of integrals

The most natural definition of integrable functions with real values is that
they should satisfy the condition

m*(f) = m.(f),

the common value of the two sides then being the value of the integral m(f)
of f; one extends the definition to functions f = g + ik with complex values
by requiring both g and h to be integrable and putting

m(f) =m(g) + im(h).

This definition, adopted in the First French Edition for reasons of simplicity,
has several drawbacks; in particular, it is not obvious — although, of course,
true — that the absolute value |f| = [Re(f)2+Im(f)?]? of a complex-valued
integrable function is again integrable, as Michel Ollitrault, a reader of the
First Edition, has justly remarked to me. We shall therefore abandon this
definition temporarily, to recover it later, and we shall adopt a method used
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in the modern theory too. We shall develop it for complex-valued functions,
but it will also apply to functions with values in a finite dimensional vector
space, or even a Banach space, which is not the case for the first simplistic
definition.

We shall spy that a function f is integrable if, for any r > 0, there is
a step function ¢ (with values in the same space as f if one is integrating
vector-valued functions) such that

(2.1) m*(1f - ¢l) <.

If f has real values this means, intuitively, that the numerical (and not al-
gebraic) measure of the area in the plane included between the graphs of f
and ¢ is < r; there is no point in assuming ¢ “above” or “below” f- It comes
to the same to require the existence of a sequence of step functions ¢,, such
that

(2.1) mm*(|f —onl) =0

or, as one says, which converges in mean to f. One says “in mean” because
the fact that the upper integral of a positive function h(z) is very small
does not prevent h from taking very large values on very small intervals:
1010010—200 — 10—100_

To define the integral of an integrable function f one uses the relation
(1’). By the triangle inequality we have

lop — @al < lpp — FI+1f — gl

and so

Im(pp) - m(pg)| = Im(pp — ®q)| < m*(lop — fI) + m*(|f - ®ql)s

by (1.11). The sequence with general term m(yy,) therefore satisfies Cauchy’s
convergence criterion (Chap. III, n° 10, Theorem 13). Its limit depends only
on f. For if 1, is another sequence of step functions satisfying (1°) the relation

lon = Ynl < |f — onl +|f — ¥l

shows, in a similar way, that m(¢,) — m(1,,) tends to 0.

It is natural to call the limit of the m(,) (common to all sequences of
step functions converging to f in mean) the integral of f, and to denote it by
m(f). This kind of argument, used in many other places, is similar to the one
we used to define a® for @ > 0 and z € R, by approximating z by a sequence
of rational numbers z, and showing that the sequence a®" converges to a
limit independent of z (Chapter IV, § 1, end of n° 2).

If an integrable function f has real (resp. positive) values then its integral
is real (resp. positive). If f is real, and if in (1°) one replaces ¥n by Re ¢,
one decreases the function |f — ¢,| and so its upper integral, so that the
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sequence of real functions Re(yn) again converges to f in mean, whence the
first result. If, moreover, f is positive, in which case one may assume the @,
real, one argues in the same way, replacing the ¢, (z) by 0 on the intervals
where @, < 0: this can only decrease the value of |f(x) — ¢n(z)|, and so of
the upper integral.

If f and g are integrable then f + g is integrable and

m(f + g) = m(f) + m(g)-

Take step functions ¢, and v, converging in mean to f and g, write

|(f+g) — (n +9n)| < |f — onl| + |g—¢n|

to show that ¢, + 1, converges to f + g in mean, and use (1.6).

If f is integrable then so is af for any a € C, and m(af) = am(f).
Obvious: multiply f and ¢ by a in (1) and apply (1.12).

These first results already show, for real integrable f and g, that

f < g implies m(f) < m(g),

since 0 < m(g — f) = m(g) + m(—f) = m(g) —m(f).
If f is integrable then so is |f], and

(2.2) Im(H) < m(f) <m(D) £l

where, we recall, || f||; = sup|f(x)| is the norm of uniform convergence on I
(Chap. III, n° 7). For any complex numbers o and § we have [lal — 18] <
| — B|, whence, in the notation of (1°),

1f @) = len(@)|| < |f(2) —¢n(z)] forallzel

and so m*(|f| = |¢n|) < m*(|f — @nl); this proves that |f] is integrable like
f, since the |¢y| are also step functions. Since the integrals of ¢, and |@a|
converge to those of f and | f|, by definition of the latter, and since (2) applies
to the ,,, one obtains the first inequality (2) in the limit. The second follows
from the fact that |f(z)| < ||f|l; everywhere on I, so that m(|f]|) is less than
the integral of the constant function z +— || ||,

The complez-valued function f is integrable if and only if the functions
Re(f) and Im(f) are. If so,

m(f) = m[Re(f)] + i.m[Im(f)].

Since |Re(f) — Re(pn)| < |f — @nl, with a similar relation for the imaginary
parts, it is clear that Re(f) and Im(f) are integrable if f is; the relation to
be shown then follows from the linearity properties already obtained; these
show 10 less trivially that f is integrable if Re(f) and Im(f) are.
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A real function f is integrable if and only if m*(f) = m.(f).

Suppose first that m.(f) = m*(f). Then, for every r > 0 there are step
functions ¢ and ¢ framing f whose integrals are equal to within r. Since
|f =¥l = f =% < ¢ — 1 it follows that m*(|f — ¢|) < m(p — ) < r, whence
the integrability of f.

Suppose conversely that f is integrable and consider a step function @
such that

m*(If —l) <3
one may assume o real as above. Since m*(|f — ¢|) is, by definition, the lower
bound of the numbers m(3) over all step functions ¢ > |f — ¢|, the strict
inequality proves the existence of a step function ¢ such that

lf—wl<y & my)<r

Since ¢ ~ 9 < f < ¢ + 9 we have thus framed f between two step functions
whose difference has integral < 2r; so m*(f) = m.(f). Moreover,

m(e — ) <m*(f) < mp +¢);

since f is integrable we already know that this relation is preserved if one
replaces m*(f) by m(f), whence m(f) = m*(f), since the extreme terms in
the preceding relation are equal to within 2r.

To sum up:

Theorem 1. Let I be a bounded interval. (i) If the bounded functions f and
g are integrable on I, then so likewise is af 4+ Bg for any constants a and 3,
and

(2.3) m(af + Bg) = am(f) + Bm(g).

(i) If f is defined, bounded and integrable on I, then the function |f| is
integrable, and

(2.4) Im(H)] < m(f]) < m(D)|| £l = m(I)sup |f ().
(#41) The integral of a positive function is positive.

The standard notation
m(f) = [ f@yz

will be explained later (n° 3).

The definition of integrable functions shows immediately that, on a com-
pact interval, every regulated function is integrable; for every r > 0 there
exists, by the definition (Chap. III, n° 12) a step function ¢ such that
|f(z) — (z)| < r for every z; then, by (1.10), m*(|f — ¢|) < m(I)r, whence
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the result. We shall prove later (n° 7) that, on a compact interval, every con-
tinuous function is regulated, so integrable. One hardly needs more subtle
results in elementary analysis.

It is not difficult to construct non-integrable functions: it is enough to
take the Dirichlet function f(z) on I, equal to 0 if x € Q and to 1 if z ¢ Q.
Now, if a step function ¢ < f is constant on the intervals I of a partition
of I, it must be < 0 on every nonsingleton I since such an interval contains
rational numbers where f(z) = 0; likewise, every step function ¢ > f must be
“almost” everywhere > 1. Thus m.(f) = 0 and m*(f) = m(I). The Lebesgue
theory allows one to integrate the function f, with the same result as if one
had f(z) = 1 everywhere, and this because Q is countable. It may appear
bizarre to consider such functions — Newton would have said that one does
not meet them in Nature3 —, but it is one of those which led Cantor towards
his great set theory, not to be confused with the trivialities of Chap. I. Even
though the function in question is strange, one cannot deny it the merit of
simplicity; if analysis is incapable of integrating such functions, one might
begin to suspect that this is the fault of analysis and not of the function ...

We said above that the integral of a positive function is positive; could it
perhaps be zero? This is one of the fundamental questions which the complete
Lebesgue theory allows one to resolve. For the moment we make just two
elementary remarks.

If the integral of a continuous positive function f is zero, then f = 0. For
if we have f(a) =7 > O for some a € I, then the continuity of f shows that
f(x) > /2 on an interval J C I of length > 0; if p is the step function equal
to /2 on J and to 0 elsewhere then m(f) > m(p) = rm(J)/2 > 0.

This result (which presupposes the integrability of the continuous func-
tions and uses the fact that, in the traditional theory, the measure of a non-
empty open interval is > 0) does not extend to discontinuous functions. For a
positive step function for example, it is clear that the integral vanishes if and
only if the points where the function does not vanish are finite in number. In
the much more general case of a regulated function, the apposite condition
is that the set defined by the relation f(z) # 0 should be countable (n° 7).

Before stating the next theorem let us note that if we have real functions
f and g defined on any set X we can construct the functions

sup(f,g) : 2 max[f(z),g(z)],
inf(f,g) : — min[f(z),g(z)];

these definitions generalise in the obvious way to a finite number of functions
(and even to an infinite number on replacing max and min by sup and inf) and

3 We will meet them in computer science when there exist machines capable of
distinguishing the rational numbers automatically from the others.
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lead us to the upper and lower envelopes of the given functions. In particular,
for every real function f we can define the functions

fr=sup(f,0) : a fl@)"
f~=sup(=£,0) : =~ f(@)7,
Ifl 2z |f(@)]
where, for every real number, we put (Chap. 1L, n° 14)
zt = max(z,0), z~ = max(—z,0);
it is trivial to show that, for every x € R,
z=z" -z, lz| =zt + 2~

with similar relations for real-valued functions. An elementary argument,
which Figure 1 makes obvious, shows that

sup(f,g)=f+(g— N, wi(f,e)=9-(9- N

these operations are defined pointwise, using only the values taken at each
z € X by f and g, so these relations follow from the same relations for real
numbers. See Chap. II, n° 14, where this notation has already been used.

Theorem 2. If the real functions f and g are integrable on I, so are the
functions sup(f,g) and inf(f,9)-

By Theorem 1 and the formula above it is enough to show that if f is
integrable then so is f +_ This follows immediately from the definition, (1) or
(1"), and from the inequality Iff =t < |If — el

The preceding “theorem” shows more generally that the upper and lower
envelopes of a finite number of integrable real functions are again integrable.
When we try to extend this result to a countable family of functions we
embark on integration theory proper; see Appendix (L 16).

Theorem 3. Let f and g be two bounded integrable functions on a compact
interval I. Then the function f§ is integrable and (Cauchy-Schwarz inequal-
ity*)
4 Hermann Amadeus Schwarz, German mathematician of the end of the XIX cen-
tury. The Soviet mathematicians remarked several decades ago that one ought to



