


GENES IX

Benjamin Lewin

JONES AND BARTLETT PUBLISHERS

Sudbury, Massachusetts
BOSTON TORONTO LONDON SINGAPORE



World Headquarters Jones and Bartlett Publishers Canada Jones and Bartlett Publishers International

Jones and Bartlett Publishers 6339 Ormindale Way Barb House, Barb Mews
40 Tall Pine Drive Mississauga, Ontario L5V 1J2 London W6 7PA
Sudbury, MA 01776 CANADA UK

978-443-5000

info@jbpub.com

www.jbpub.com

Jones and Bartlett’s books and products are available through most bookstores and online booksellers. To contact Jones and Bartlett
Publishers directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jbpub.com.

Substantial discounts on bulk quantities of Jones and Bartlett’s publications are available to corporations, professional associations, and
other qualified organizations. For details and specific discount information, contact the special sales department at Jones and Bartlett via
the above contact information or send an email to specialsales@jbpub.com.

Copyright © 2008 by Jones and Bartlett Publishers, Inc.

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system,
without written permission from the copyright owner.

Production Credits

Chief Executive Officer: Clayton Jones Marketing Manager: Andrea DeFronzo
Chief Operating Officer: Don W. Jones, Jr. Interactive Technology Manager: Dawn Mahon Priest
President, Higher Education and Professional Publishing: = Book Designer: Anne Spencer
Robert W. Holland, Jr. Cover Designer: Kristin E. Ohlin
V.P., Design and Production: Anne Spencer Art Director: Jan VanAarsen
V.P., Manufacturing and Inventory Control: Tlustrations: Imagineering Media Services, Inc.
Therese Connell Photo Development and Research Manager:
V.P,, Sales and Marketing: William J. Kane Kimberly Potvin
Acquisitions Editor, Science: Cathleen Sether Composition: Shepherd Inc.
Managing Editor, Science: Dean W. DeChambeau Printing and Binding: Courier Kendallville
Editorial Assistant, Science: Molly Steinbach Cover Printing: Courier Kendallville
Senior Production Editor: Louis C. Bruno, Jr. " Cover Image: © Professor Oscar Miller/Photo
Production Assistant: Jennifer M. Ryan Researchers, Inc.

About the cover: DNA transcription by mRNA. Colored transmission electron micrograph of DNA and messenger
RNA (mRNA) molecules forming a feather-like, transcriptionally active structure. This DNA is from the nucleus of an
amphibian egg. The backbone of the feather, running down the image, is a long strand of DNA coated with protein.
Numerous mRNA molecules extend in clusters from the DNA strand. Transcription of genetic information begins at
one end of the gene, with the mRNA molecules growing longer as they approach completion. Transcription is the first
step in protein synthesis. Magnification: approximately x30,000.

Library of Congress Cataloging-in-Publication Data
Lewin, Benjamin.
Genes IX / Benjamin Lewin.
p: lem:
Includes bibliographical references and index.
ISBN-13: 978-0-7637-4063-4 (alk. paper)
ISBN-10: 0-7637-4063-2
1. Genetics. 2. Genes. I Title. II. Title: Genes 9. III. Title: Genes nine.
[DNLM: 1. Genes—physiology. 2. DNA—genetics. 3. Genetic Processes. 4. Genome. 5. Proteins—genetics.
6. RNA—genetics. QU 470 L672g 2006]
QH430.L4 2006
576.5—dc22 2006010787
6048

Printed in the United States of America
1210509508 07 10598 7565 48321



Preface

Science is a wonderfully resilient venture. There are new
and interesting developments to report in each revision of
this book, and this revision includes much updated mate-
rial to account for new findings in molecular research. The
general organization of material in this edition has been
revised along the same lines as Essential Genes, making it
easier to use the two books in conjunction. With increas-
ing size becoming a problem, the content has been more
sharply focused on genes and their expression by eliminat-
ing the chapters dealing with the consequences of gene ex-
pression for cell biology. Striking changes occur in the first
part of the book, dealing with genomes, resulting from the
success of many genome sequencing projects. The impor-
tance of RNA as a regulator has become increasingly evi-
dent and now can be seen to extend across all levels of gene
expression in both prokaryotes and eukaryotes. Somewhat
of a “missing link,” it casts further light on how the current
apparatus for gene expression must have evolved from the
early RNA world.

My policy in this book has been to cite research and
review articles that I believe readers will reasonably be able
to access. My preference is for articles that are free after six
months; where that is not possible, the publication should
be widely available.

I thank the following individuals who served as proof-
readers and consultants for this revision:

Elliott Goldstein
Jocelyn Krebs
Kathleen Matthews

University of Arizona, Tempe
University of Alaska, Anchorage
Rice University, Houston

Benjamin Lewin
January 2007

Organization

The new organization of GENES IX allows instructors and
students to focus more sharply on genes and their expres-
sion with expanded coverage of key topics. The number of
chapters and the order of topic coverage remains the same;
however, several chapters were expanded into two or more
chapters. These changes are as follows:

xvi

Chapter 1 in GENES VIII, Genes are DNA, is expanded to
two chapters in GENES IX. Basic information on DNA struc-
ture, replication, and mutation remains in Chapter 1,
whereas the discussion of the gene’s function as the unit of
heredity appears in the new Chapter 2, Genes Code for
Proteins.

Chapter 3 in GENES VIII, The Content of the Genome, be-
comes two chapters in GENES IX.

Chapter 4, The Content of the Genome, includes informa-
tion on DNA sequences, genome mapping, and DNA in
organelles.

Chapter 5, Genome Sequences and Gene Numbers, now
contains genome size and expression information for a
number of organisms, as well as new material on genes in
the Y chromosome.

The new Chapter 12, The Operon, comprises GENES VIII
Chapter 10, as well information on regulation of transcrip-
tion and translation from GENES VIII Chapter 11, Regulatory
Circuits. Material on regulatory RNA is now found in
Chapter 13.

The material in GENES VIII Chapter 13, The Replicon, is
expanded in three chapters in GENES IX. Chapter 15, The
Replicon, covers the structure and function of the replicon,
as well as replication origins. Chapter 16, Extrachromosomal
Replicons, contains material on terminal proteins, rolling
circle replication, plasmids, and T-DNA. Information on
how bacterial replication is connected to the cell cycle is
found in Chapter 17.

Recombination and Repair, Chapter 15 in GENES VIII, is
now covered in two chapters in GENES IX. Chapter 19 cov-
ers homologous and site-specific recombination, and Chapter
20 covers the repair systems, including new information
on excision-repair pathways in mammalian cells.

Chapter 23, Controlling Chromatin Structure, in GENES
VIII is now Chapter 30, discussing the relation between
chromatin structure and gene expression.



Chapter 31, Epigenetic Effects are Inherited, details the
causes and mechanisms of epigenetic inheritance.

Art Program and Design

GENES IX has a new, contemporary look. Both the design
and art program for this edition were updated and revised
to facilitate student learning. In addition, the style and
design for GENES LX intentionally matches that of Lewin’s
new cell biology text, CELLS, which allows students and
instructors to easily utilize both texts.

Supplements to the Text
For the Student

The web site developed exclusively for the ninth edition of
this text, http://biology.jbpub.com/book/genes/, offers a
variety of resources to enhance understanding of molecu-
lar biology.

Laboratory Investigations in Molecular Biology, by Williams,
Slatko, and McCarrey, presents well-tested protocols in
molecular biology that are commonly used in active re-

search labs. The experiments are designed to guide students
through realistic research projects conducted in modern
research laboratories.

For the Instructor

Compatible with Windows and Macintosh platforms, the
Instructor’s ToolKit—CD-ROM provides instructors with
the following traditional ancillaries:

e The Test Bank is available as straight text files.

e The PowerPoint® Lecture Outline Slides presentation pack-
age provides lecture notes, and images for each chapter
of GENES IX. Instructors with the Microsoft PowerPoint®
software can customize the outlines, art, and order of
presentation.

e The Image Bank provides the critical art and tables in the
text to which Jones and Bartlett Publishers holds the
copyright or has digital reprint rights. The image library
enables instructors to project images from the text in the
classroom, insert images into PowerPoint® presentations,
or print overhead acetates.

Preface xvii
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Introduction

DNA Is the Genetic Material of Bacteria

» Bacterial transformation provided the first proof that DNA
is the genetic material of bacteria. Genetic properties can
be transferred from one bacterial strain to another by
extracting DNA from the first strain and adding it to the
second strain.

DNA Is the Genetic Material of Viruses

e Phage infection proved that DNA is the genetic material of
viruses. When the DNA and protein components of bacterio-
phages are labeled with different radioactive isotopes, only
the DNA is transmitted to the progeny phages produced by
infecting bacteria.

DNA Is the Genetic Material of Animal Cells

* DNA can be used to introduce new genetic features into
animal cells or whole animals.

e In some viruses, the genetic material is RNA.

Polynucleotide Chains Have Nitrogenous Bases Linked to
a Sugar-Phosphate Backbone

¢ A nucleoside consists of a purine or pyrimidine base linked
to position 1 of a pentose sugar.

e Positions on the ribose ring are described with a prime (")
to distinguish them.

e The difference between DNA and RNA is in the group at the
2’ position of the sugar. DNA has a deoxyribose sugar
(2’-H); RNA has a ribose sugar (2"-0H).

* A nucleotide consists of a nucleoside linked to a phosphate
group on either the 5" or 3’ position of the (deoxy)ribose.

e Successive (deoxy)ribose residues of a polynucleotide chain
are joined by a phosphate group between the 3" position of
one sugar and the 5" position of the next sugar.

e One end of the chain (conventionally the left) has a free 5’
end and the other end has a free 3" end.

* DNA contains the four bases adenine, guanine, cytosine,
and thymine; RNA has uracil instead of thymine.

DNA Is a Double Helix
e The B-form of DNA is a double helix consisting of two
polynucleotide chains that run antiparallel.

e The nitrogenous bases of each chain are flat purine or
pyrimidine rings that face inward and pair with one another
by hydrogen bonding to form A-T or G-C pairs only.

1.10

e The diameter of the double helix is 20 A, and there is a
complete turn every 34 A, with ten base pairs per turn.

e The double helix forms a major (wide) groove and a minor
(narrow) groove.

DNA Replication Is Semiconservative

® The Meselson-Stahl experiment used density labeling to
prove that the single polynucleotide strand is the unit of
DNA that is conserved during replication.

e Each strand of a DNA duplex acts as a template to synthe-
size a daughter strand.

e The sequences of the daughter strands are determined by
complementary base pairing with the separated parental
strands.

DNA Strands Separate at the Replication Fork

e Replication of DNA is undertaken by a complex of enzymes
that separate the parental strands and synthesize the
daughter strands.

e The replication fork is the point at which the parental
strands are separated.

* The enzymes that synthesize DNA are called DNA poly-
merases; the enzymes that synthesize RNA are called RNA
polymerases.

* Nucleases are enzymes that degrade nucleic acids; they
include DNAases and RNAases and can be divided into
endonucleases and exonucleases.

Genetic Information Can Be Provided by DNA or RNA

e Cellular genes are DNA, but viruses and viroids may have
genomes of RNA.

e DNA is converted into RNA by transcription, and RNA may
be converted into DNA by reverse transcription.

e The translation of RNA into protein is unidirectional.

Nucleic Acids Hybridize by Base Pairing

* Heating causes the two strands of a DNA duplex to
separate.

e The Ty, is the midpoint of the temperature range for
denaturation.

e Complementary single strands can renature when the tem-
perature is reduced.

e Denaturation and renaturation/hybridization can occur with
DNA-DNA, DNA-RNA, or RNA-RNA combinations and can be
intermolecular or intramolecular.

Continued on next page



