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Preface

Research on electronic systems in condensed matter physics is at present
developing very rapidly, where the main focus is changing from the “single-
particle problem” to the “many-particle problem”. That is, the main research
interest changed from phenomena that can be understood in the single-
particle picture, as, for example, in band theory, to phenomena that arise
owing to the interaction between many electrons.

As examples of the latter case, we mention superconductivity and mag-
netism; in both cases the research has a long history. New developments in
these fields are the studies on phenomena that are beyond the scope of mean
field theories such as BCS theory and mean field theory of the spin density
wave — and are related to research on so-called electronic correlation. Elec-
tronic correlation effects arise owing to strong quantum as well as thermal
fluctuations. When fluctuations are large, the interaction between different
degrees of freedom becomes important; for example, the interplay between
magnetism and superconductivity in high temperature superconductors.

The best framework to describe strongly interacting degrees of freedom —
which is nothing but the “field” itself - is quantum field theory. In this volume,
applications of quantum field theory to the problem of strongly correlated
electronic systems are presented in a — hopefully — systematic way in order
to be understandable to the beginner. Knowledge of the basic topics discussed
in Quantum Field Theory in Condensed Matter Physics, written by the same
author, is presumed.

This volume consists of a series of themes. In the first part, one-dimension-
al, many-particle quantum systems are discussed. In a single dimension, order
cannot emerge owing to strong quantum fluctuations, and therefore, down to
zero temperature, a quantum liquid survives. Therefore, the one-dimensional
system is a very important toy model for the discussion of electronic cor-
relation, where many ideas and methods can successfully be applied, and
where the results are established with the highest accuracy. Discussion of
these models determines the basic direction for the whole range of problems
related to electronic correlation. In Chap. 1, the XXZ quantum spin chain
is discussed in its classical and quantum limits. The most important object
here is the kink, which can be described in terms of a fermion that is related
to the spins by a non-local phase factor (a Jordan-Wigner transformation).
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Here, issues such as a new particle (kink), non-locality and quantum statistics
appear for the first time, being important in all problems related to electronic
correlation.

In Chap. 2, the quantum field theory of an interacting fermion system,
being equivalent to the XXZ spin chain, is discussed. Starting from the fact
that the one-dimensional fermion system can be described by the two Fermi
points kF and kk, the canonical conjugate relation between the density and
the current is derived. Using the (bosonic) phase fields 8, and 6_ for their
description, the fermionic system is finally mapped to the Sine-Gordon sys-
tem. Kinks (solitons) are the classical solution of the quantum Sine-Gordon
system, which correspond to the original fermions. The kink connects the
different minima of the sine potential, which has a finite excitation energy in
a classical approximation. However, when the quantum fluctuations become
large, the sine potential itself is effectively reduced and eventually washed
out, and in the excitation spectrum of the kink, the gap disappears. This will
be demonstrated in Sect. 2.1 using the renormalization group. When the sine
potential can effectively be neglected, the system can simply be described in
terms a of Gaussian (1+1)-dimensional free bosonic theory. At first sight, the
theory looks trivial; however, it contains very fundamental theoretical struc-
tures, that is, invariance under conformal (angle conserving) transformations
on the complex plane. In Sect. 2.2, the Gaussian theory is discussed using
conformal field theory.

In this way, many different theoretical approaches can be used to de-
scribe gapless one-dimensional quantum liquids. However, quantum liquids
having a gap in the excitation spectrum are also known. The antiferromag-
netic Heisenberg model with integer spin S, called the Haldene system, is
a representative example. For its analysis we use another method different
from bosonization, based on the non-linear sigma model (Sect. 2.3). The ad-
vantages of this model are that the meaning of the Berry phase can be seen
very clearly, and that it can be generalized to higher dimensions.

Starting from Chap. 3, systems containing both a charge and spin degree
of freedom, and higher-dimensional systems are discussed. First, strongly cor-
related electronic systems are introduced. In Sect. 3.1, many different models
are presented, and the idea of deriving effective Hamiltonians by restrict-
ing the Hilbert space is introduced. Because these restrictions in the Hilbert
space are represented by constraint conditions, strongly correlated electronic
systems are often formulated as quantum theory under constraints.

Spin-charge separation is one of the central issues in strongly correlated
electronic systems. This phenomenon appears in the one-dimensional inter-
acting electron system in the most striking way, as described in Sect. 3.2 using
a generalization of the bosonization method introduced in Chap. 2. Density
and current of spin 1 and | are defined, where the sum and the difference rep-
resent the charge and spin degree of freedom, respectively. This spin charge
separated one-dimensional quantum liquid — the Tomonaga-Luttinger fluid -
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is the representative example of a non-Fermi liquid. Here, the description us-
ing bosonization is not principally different from that of the theory of a Fermi
liquid; however, because the Fermi surface in a single dimension only con-
sists of two single points, no individual excitation exists, but only collective
excitation modes. This is the reason for the non-Fermi-liquid behaviour.

On the other hand, in two and three dimensions, compared with a single
dimension, the quantum fluctuations are smaller, and under some circum-
stances magnetic ordering occurs. For this reason, one crucial degree of free-
dom for the description of strongly correlated electronic systems is the mag-
netic moment, and it seems natural to describe the properties of the system
by analysing its ordering and fluctuations. Following this outline, in Sects.
3.3 and 3.4, mean field theory and the fluctuations of the magnetic ordering
are discussed, respectively. In particular the latter is analysed in terms of
both self-consistent renormalization and the quantum renormalization group
in order to investigate the singular enhancement of quantum fluctuations in
the vicinity of phase transition points at zero temperature ~ driven by some
external parameters like pressure, etc.

Another point of view beside the discussion of magnetic moment and its
fluctuations is the discussion of spin singlet formation. One representative
example is the magnetic impurities in the metal — the Kondo effect. When
only one spin moment exists, magnetic ordering cannot occur. Finally, the
localized spin and the spins of conduction electrons of the metal form a singlet
and the entropy is quenched. As a result, the system becomes a magnetically
inert local Fermi liquid. This state can be analysed in terms of the slave
boson method. On the other hand, in the case when the number of channels
of conduction electrons is large (the multi-channel Kondo problem), it is
known that a local non-Fermi-liquid state can arise also. This state, too, can
be described using the slave boson method. By determining a saddle point
solution where the bosons do not condensate, it can be shown that the Green’s
function is characterized by non-trivial critical exponents.

The Kondo model can also be approached using many other theoretical
methods. In particular, by partial wave analysis, the incoming wave and the
scattered wave can be regarded as one-dimensional in dependence on the
polar coordinate r. In such a way, the problem of a localized impurity can
be mapped on the problem of an impurity interacting with an electron in
one dimension. Here, the framework of the (1+ 1)-dimensional quantum field
theory as developed in Chap. 2 can be applied. Furthermore, it can be shown
that the impurity problem is equivalent to the effective model developed
in Sect. 4.2 using dynamic mean field theory in the limit of large spatial
dimension d. With this knowledge, it becomes clear that the problem of
electron correlation in d = 0 dimensions (local impurity), d = 1 and d = o
are intimately related to each other.

However, this does not mean that all systems with strongly correlating
electrons are understood. In particular, it is possible that in the important
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dimensions d = 2 and d = 3 physical phenomena could appear that cannot
be explained within this framework. In the theories described above, in every
case the degree of freedom on the site — for example, the localized moment or
the localized electrons appearing in dynamic mean field theory — has been con-
sidered. One might assume that it is a complementary approach to focus on
the degree of freedom defined on the link between two sites. The field defined
on the link describes the “relation” between the degrees of freedom on each
site; mathematically speaking, this is the connection and, in physics, this field
is called the gauge field. For example, when the spin moment is considered
as the degree of freedom at each site, for a quantum liquid where, owing to
quantum fluctuations, the magnetic order has disappeared, we might assume
rather that the singlet amplitude defined on the link is a meaningful order
parameter. In Chap. 5, theories of strongly correlated electronic systems are
developed from this point of view. Explicitly, the quantum anti-ferromagnet
(Sect. 5.1), the doped Mott insulator, being deeply related to high temper-
ature superconductivity (Sect. 5.2), and the quantum Hall liquid (Sect. 5.3)
are described in terms of gauge theory. In particular, in Sect. 5.3, the use
of the Chern-Simons gauge field for the description of non-local quantum
statistics is discussed, being the generalization of the Jordan—Wigner trans-
formation of Chap. 1 to the two-dimensional case. In such a way, the book
closes with a reprise, and the author hopes that the reader will be able to
see the content of this book in a new light from the point of view of gauge
theories.

I owe special thanks to my supervisors and colleagues, especially E. Hana-
mura, Y. Toyazawa, P. A. Lee, H. Fukuyama, S. Tanaka, M. Imada, K. Ueda,
S. Uchida, Y. Tokura, N. Kawakami, A. Furusaki, T. K. Ng, and Y. Kuramoto.

Tokyo, January 1999 Naoto Nagaosa
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1. The One-Dimensional Quantum Spin Chain

Among many-body quantum systems, the one-dimensional occupies a special
position. Owing to strong quantum fluctuations, the system is a quantum liq-
uid, and down to zero temperature, no ordered state emerges. In this chapter,
the one-dimensional quantum spin system will be discussed, being the intro-
duction to the theory of strongly correlated systems.

1.1 The § = 1/2 XXZ Spin Chain
First, we consider the following Hamiltonian:

H=J.Y (SFS5%, +5¥SY,) +J. Y SiSH, . (1.1.1)
i i

Here, S; is the spin S = 1/2 operator. Expressing the T spin state as [1,0]
and the | state as [0, 1], and using the Pauli matrices & = (0%, 0¥,0%)

01 0 —i 1 0
T Y — z __
i I R s PR PR
the spin operator is given by S; = (h/2)o;. The spin operator satisfies
[57,87] = ihiseas, ST - (11.2)

Eap~y s the total antisymmetric tensor with €5, = 1. In what follows, we
usually set i = 1. J; as well as J, are the nearest-neighbour exchange inter-
actions; and for the case J, = J,, the Hamiltonian is called the Heisenberg
model.
From the commutation relation (1.1.2), it is clear that the unitary oper-
ator
U;(n,8) = '™ S: (1.1.3)

rotates the spin. Here, n is the unit vector, and @ is the rotation angle. For
example, the case where n = e, = (0,0, 1),

Ui(es,0)S2U] (e.,0) = 58(6) (1.1.4)
leads to



2 1. The One-Dimensional Quantum Spin Chain

d37(0)

g = Ui-ilSE, ss1Uf = —38¥(9), (1.1.5a)
a9 = S7(9), (1.1.5b)

dSz(6)
B = 0. (1.1.5¢)

The solution is then given by

S7(6) = 7 cos — S¥sin0, (1.1.6a)
SY(0) = S¥sinf + S¥ cos b, (1.1.6b)
S7(0) = Sz (1.1.6¢)

Obviously, this describes a rotation around the z-axis. Next, constructing the
unitary operator T' = [],.. .. Un(e,, ) from U;, because of

TSPTT = (-1)i87, (1.1.7a)
TSIT! = (-1)'s?, (1.1.7b)
TS:T = 5%, (1.1.7¢)

the transformation THTT of (1.1.1) interchanges J;, — —J 1,y = J,. We
conclude that the sign of J, is not essential. _

On the other hand, the sign of J, plays an essential role for the quantum
system. This is owing to the fact that, different from (1.1.7), the commutation
relation (1.1.2) of the spin components is changed for S; — —S8;. First, we
construct with S* and S¥:

S* = 8% +igv. (1.1.8)

Because of

01 _ 00

+ -

#=los] =[]

S* is the operator that flips the spin T state to l, and S~ flips | to 1. Using
these operators, the Hamiltonian (1.1.1) can be re-expressed as

H=-Z

3

(S5 + 8785, + 4. ) 8287, (1.1.9)

Now, regarding S;7 as a ‘coordinate’, ST displace this coordinate as if it
were the ‘momentum’. In this interpretation, the unitary operator U; (1.1.3)
corresponds to the linear transformation operator U = eioP (z: coordinate;
p: momentum; o: constant). Then, the term proportional to J, in (1.1.9)
- represents the ‘kinetic energy’ causing the quantum fluctuations of S7, and
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the term proportional to J, represents the ‘potential energy’ that causes the
ordering of S?. The competition between these two tendencies is the physics
that is contained in (1.1.1) as well as in (1.1.9).

We first consider the classical limit J; = 0. This is the so-called Ising-
model; and the spins align at zero temperature depending on the sign of J,
ferromagnetic ally (J, < 0), or anti-ferromagnetically (J, > 0). Notice that
the ground state is two-fold degenerate because the Hamiltonian is invariant
under the transformation §; — —S%, performed at all sites i. Calling these
two ground states A and B and assuming that the system at the right-hand
side is in state A, and at the left-hand side in state B, then somewhere thete
must exist a boundary between region A and region B. This boundary is
called a kink or soliton. Because at finite temperature this excitation occurs
with a finite density, the spin correlation function F(r) = (5757 ) will decay
exponentially with a correlation length &.

Let us determine this explicitly. We align N spins from i = 1 to i = N with
free ends. In the thermodynamic limit N — 0o, we can ignore the influence
of the boundary. We first assume that the spin S7 at the left side is fixed
to, say, 1/2. Then, instead of S3, it is possible to consider Ly = $76% as
variable. In the same manner, instead of S3, defining Lgs = S35% and so on,
the statistical mechanics can be formulated in terms of L; ;1 instead of S7.
The correlation between S7 and S7, |, being defined on the site, is expressed
by L; i1, being defined on the link. In the parallel or anti-parallel case, the
obtained value is +1/4, respectively. Now, we write L;, /o instead of L; ;4.
Then, the Ising model can be expressed as

N-1
H= Jz Z L,‘+1/2, (1110)

i=1

which is the independent sum of the energy at every link. The free energy of
every site can be calculated easily:

1, 1 1 BuL
f=-=lim —lnZ=-=-In Z e P/
B N=oo s L=%1/4
= —%ln (2cosh%) . (1.1.11)

Next, based on the above discussion, we calculate F(r) = (S7S?,,). First, we
observe that S7S?, . is ‘non-local’ when expressed in terms of L;1/2. That
is,

45757, = (4Liy172)(4Lis3/2) - - - (4Li4r—1/2) (1.1.12)

can be expressed as the product of r terms in L connecting the sites ¢ and
i+ r. With (1.1.10), from this fact we obtain
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. > 4Le BJ:L
wm=HL#W

=1

e—BT,L
L=%1/4

= o (552)]
= (—sgnJ,)" exp [rlnt;anh (—ﬂ%)] . (1.1.13)

Writing the absolute value of the left-hand side of (1.1.13) as e~"/¢, the
correlation length ¢ is determined to be

1
Intanh (%)

Furthermore, at low temperature 3].J,| > 1, in the limit where a small num-
ber of kinks are thermally excited, equation (1.1.14) becomes

£=— (1.1.14)

£l =2e7 A2, (1.1.15)

Recalling that the creation energy for a kink is given by AE = |J,|/2, the
right-hand side corresponds to the number of kinks, and & can be interpreted
as the mean distance between two kinks. That is, the long-range order F' (r)=
i(—sgnJd,)" at T=0K is destroyed owing to kink excitation. Notice that a
kink comes up as a change in sign of Liy12-

The classical statistical mechanics described above almost did not depend
on the sign of J,. The only dependence emerges in (—sgn J)" in (1.1.13),
and, indeed, J, changes to —J, when in the Hamiltonian all S7 are altered
to —S7. When proceeding to quantum mechanics, this is no longer correct.
This is owing to the following reason. The term proportional to J, in (1.1.9)
causing the quantum mechanical motion expresses the simultaneous flip of
two neighbouring spins. It can be expressed as a product of S* and S,
therefore when one S* is growing, the other must diminish, and the sum
SF + S%,, is conserved. This simultaneous spin flip is the change between
|Sf =1/2,8%,, = —1/2) and |S7 = ~1/2, S?,, = 1/2). For parallel spins, this
change cannot occur. In a more mathematical language, let us define the total
spin operator:

Siot =) Si. (1.1.16)
Then, SZ; = Stot - Stot, and SZ, commute with the Hamiltonian (1.1.9):
[Stzot’H] = [S:ot,H] =0. (1.1.17)

That is, the quantum system can be decomposed into eigenstates of 82, and
S¢t- In the case when J, < 0 of the ferromagnetic interaction, it is clear
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that the classical ground states |{S7 = 1/2}) and |{S? = —1/2}) are also the
eigenstates of the Hamilton operator H. On the other hand, the classical
ground state in the anti-ferromagnetic case (the so-called Néel state) is not
an eigenstate of the Hamiltonian. This becomes clear by constructing the
staggered magnetization

Sstaggered = Z("l)zsi . (1.1.18)
k3

The Néel state is an eigenstate of S5, creq- However, [S5,oereqs H] is dif-
ferent from zero. That is, for S5,  ceq there must exist a zero point quan-
tum fluctuation. The physical picture for this zero point fluctuation is just
the resonance between the states |S7 = 1/2, 8% ; = —1/2) and |S7 = ~1/2,
87,1 = 1/2) that has been mentioned before. Considering for simplicity only
two spins, S; and 8,41, setting J; > 0, owing to this resonance the ground
state becomes a linear combination of two states

) 1 1 1 11
|singlet) = 7 ( 3 —§> — =3 §>) . , (1.1.19)

This is the spin singlet wave function. That is, the quantum fluctuation of
S# leads to the singlet formation. Equation (1.1.9) can be interpreted as
competition between the tendency of J, to create singlet states leading to
the emergence of a quantum liquid, and the tendency of J, to order the spins.

Above, considerations concerning the ground state have been done. Next,
we consider the first excited state based on the Néel ground state of the
classical system. This is the domain wall as shown in Fig. 1.1. In what follows,
we think about the Ising limit J, > J, > 0, where mixing between states
with different numbers of domain walls can be ignored. First, we consider the
state containing one domain wall. Calling ¥, the wave function of the state
where a domain wall is present between site n and n + 1, we obtain

J.

J
(H - ENéel)!pn = -EZ-W,,, + T_L(wn+2 + !pn-—2) . (1'1'20)

Constructing a plane wave state of a domain wall

|
|
n! int+l domain
! wall Fig. 1.1. The two degenerate

classical Néel ground states A
and B and the domain wall
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1 ikn .
?(k) = i ;e 7,, (1.1.21)
we obtain )
(H — Enéa)¥(k) = (!25 + Jy cos 2k) U(k). (1.1.22)

Therefore, the excitation energy is given by

epw(k) = —{; + J) cos2k. (1.1.23)

When one domain wall is present (in general, an odd number), the sign of
the staggered magnetization of the configuration at the boundaries n = —oo
and n = 400 changes. Therefore, no long-range order is present in the Ising
model at finite temperature as discussed above. Here, because we consider
excited states at zero temperature, we set the staggered magnetization at
n = +o0 to be equal, corresponding to periodic boundary condition. Then,
at least two domain walls have to be created. Calling the momenta k; and ks,
respectively, the total momentum ¢ and the excitation energy AE are given
by
g=ki+k2
AFE = Er_)w(kl) + epw(k2) .

The possible values for AFE for every q are given by the oblique region in
Fig. 1.2. In particular, the lower boundary is given by

(1.1.24)

AELB = Jz — 2J_L| COs qI . (1.1.25)

We conclude that the excitation spectrum does not consist of isolated spin
wave states, but is the continuum, reflecting the fact that the elementary
excitations are kinks (domain walls).

Fig. 1.2. The energy of
the domain wall pair
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1.2 The Jordan—Wigner Transformation
and the Quantum Kink

In the previous section, the one-dimensional Ising model has been discussed
as an example to demonstrate the importance of the kink. In this chapter, the
quantum mechanics of the kink will be discussed in more detail. Starting with
the conclusion, we note that the kink can be described in terms of fermions
obtained by the following so-called Jordan—-Wigner transformation

S =87 +iS¥ = fIK()) = K(i)f], (1.2.1a)
S; =8¢ —iSY = K(i) f: = f:K(i),  (1.2.1b)
S=flri-4%. (1.2.1c)

Here, K (i) is a non-local operator, defined by

i—1 i~1
o . " . . 2z, 1
K (i) = exp [m;fj fj] = exp [mj; (Sj + 5)] . (1.2.2)
K(i) = K(i)}, and [K(3), K(j)] = 0. Furthermore, for i < j, K(i) and S;
also commute. From (1.2.1) we conclude:

T _ .
fi = S{K@’ (1.2.3)
fi=S7K(i).

From these equations, the anti-commutation relation of fermions can be de-
duced.

We first examine the meaning of K(i). Using the unitary operator U;
introduced in (1.1.3), we can write

K@) = [I_Il Uj(ez,n)} e T (-1 (1.2.4)

j=1

We conclude that K (i) rotates all spins from j = 1 to i — 1 by = around the
z axis; that is, this operator shifts S* and SY to —S® and —S¥. K(i) is a
non-local spin rotating operator, and therefore creates a kink. Now, for i < j
we consider

fif; = S; K()S; K(j) . (1.2.5)
From the above considerations, we obtain
K'(5)S;7 K(j) = —S; (1.2.6)

that is, K(j) and S; do anti-commute (for j > 4). Finally, the right-hand
side of (1.2.5) becomes
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S K(9)S; K(j) = ;7 S7 K(i)K(3) = S; 87 K(#)K ()
= —S; K(4)S; K(i) = =f; f; (1.2.7)
and therefore
{fi,fi}4 =0 (1.2.8)

holds. In the same manner, for i < j, because of

fiff + £l £ = ST K()SHK(5) + S} K (5)S7 K (i)
= 57 Sy K(5)K(j) ~ S Sy K (j)K (3)
=[S, 8F] K(i)K(j) =0,

we obtain
{fi. £} =465. (1.2.9)
In this manner, the non-local spin rotating operator (in the ry-plane) trans-
lates the commutation relation of the spin operators at different sites into
the anti-commutation relation of fermion operators. As follows from (1.2.1c),
at one site, the two possible states S? = +1/2 correspond to fermion num-
ber n; = f fi = 1,0, respectively. We see how the Pauli principle naturally
describes the hmlted possibilities for the allowed spin states. That these
fermions correspond to kinks can be seen by considering, for example, the
state |F') where all spins are in the state ST = +1/2. Acting with f}, we
obtain the state fI|F) with ST = -1 (1 <i < n), §2 = +3, §7 = +1
(i > n).
The Jordan-Wigner transformation works well because although (1.2.1)
is non-local, the Hamiltonian (1.1.1) {(1.1.9)] can be expressed with these
fermions in a local manner. First, we consider the term proportional to J :

SFS51 = FFKOKGE+ 1) fina
= fF exp [inf] fi] fisr = £ fimr - (1.2.10)

Here, we used the fact that in the state multiplied with exp[ir f;‘ fi], owing to
fif , at the ith site no more fermion can be present. Also, the term proportional
to J, can be expressed locally using (1.2.1c), leading finally to

J.L N N 1 + 1
H=-= Z (f:fi+1 + fZ+1fz') +J, Z (f:ffz' - 5) (fi+1fi+1 - 5) ‘
= = (1.2.11)

As mentioned in Sect. 1.1, the sign of J; can be chosen freely, therefore we
can put a minus sign before J; > 0. We obtained the spinless fermion model
with nearest site interaction J,.

At this point, we discuss the periodic boundary conditions. Considering

a ring and setting
SN+1 = SI 3 (1212)
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the term i = N proportional to J, in (1.2.11) becomes

'% (SnST +SxStH) . (1.2.13)
Here, we obtain
S%Sy = K(N)fifi=-Kflfi. (1.2.14)
The factor K can be expressed as
N
K =exp [ierf;‘fi] =(-)M (1.2.15)
i=1

using the total number M = Ef;l f;‘ fi of fermions. The minus sign on the

right-hand side of (1.2.14) arises because in K (N), fzfv fn is not contained.
Defining

fN+1=—f1 (M : even) (l.é.lﬁa)
fN+1 = fl (.M : Odd) (1216b)

then (1.2.11) is valid as it stands.

As was mentioned in the previous section, (1.2.11) expresses competition
between the formation of a spin singlet state and magnetic ordering, that is,
competition between the kinetic energy of the fermions, i.e. itineracy, and the
formation of density waves owing to the particle interaction. One remarkable
feature of (1.2.11) is that in the case J, = 0 (XY model); that is, in the
quantum limit, the model becomes a free fermion theory that can be solved
exactly. This limit is the opposite to the Ising limit that has been mentioned
in the previous section. Introducing the Fourier transformations

fn= \/—lﬁ Ek: free*m, (1.2.17a)
. _1__ t —ikn
=75 Zk:fk e ik, (1.2.17b)
we obtain from (1.2.11)
Hxy =Y ek)-fifs  (e(k) = ~JLcosk). (1.2.18)

k

The energy dispersion is shown in Fig.1.3.

Owing to (1.2.1c), the relationship between the fermion number M and
S is 8%, = M — N/2. The Hilbertspace SZ; = 0 corresponds to the half-
filled case M = N/2. In this case, the ground state is given by the state where
the fermions occupy all states up to the Fermi energy Er = 0. Excited states
can be expressed as particle-hole creation. When N is even, the ground state
is a singlet Sior = 0, and the excited states start with Sio; = 0 or St = 1.



