nature

The Living Record of Science 《自然》百年科学经典

LONE O SANT

(英汉对照版)

第二卷

总顾问: 李政道 (Tsung-Dao Lee)

英方主编: Sir John Maddox Philip Campbell

中方主编。路甬祥

X2002-2007

1993-1997

VI 1973-1984

IV 1946-1965

T 1931-1933

X 1998-200

VII 1985-199

V 1966-1972

III 1934-1945

1860-103

nature

The Living Record of Science 《自然》百年科学经典

→ ~©¢O J&& +----

(英汉对照版)

第二卷

总顾问:李政道(Tsung-Dao Lee)

英方主编: Sir John Maddox Philip Campbell

中方主编: 路甬祥

京权图字: 01-2009-6718

Original English Text © Nature Publishing Group Chinese Translation © Foreign Language Teaching and Research Press

This edition is published under arrangment with Macmillan Publishers Limited. It is for sale in the People's Republic of China only, excluding Hong Kong SAR, Macao SAR and Taiwan Province, and may not be bought for export therefrom.

图书在版编目(CIP)数据

《自然》百年科学经典. 第2卷, 1931~1933: 英汉对照/(英) 马多克斯 (Maddox, J.), (英) 坎贝尔 (Campbell, P.), 路甬祥主编.— 北京: 外语教学与研究出版社, 2009.10 ISBN 978-7-5600-9090-0

I. 自··· Ⅱ. ①马··· ②坎··· ③路··· Ⅲ. 自然科学—文集—英、汉 Ⅳ. N53

中国版本图书馆 CIP 数据核字 (2009) 第 186284 号

出版人: 于春迟

项目负责:王 勇 章思英

责任编辑: 何 铭 装帧设计: 孙莉明

出版发行: 外语教学与研究出版社

社 址: 北京市西三环北路 19 号 (100089)

呦 址: http://www.fltrp.com

印 刷:北京华联印刷有限公司

开 本: 787×1092 1/16

印 张: 54.5

版 次: 2009年11月第1版 2009年11月第1次印刷

书 号: ISBN 978-7-5600-9090-0

定 价: 368.00元

v v x

如有印刷、装订质量问题出版社负责调换

制售盗版必究 举报查实奖励

版权保护办公室举报电话: (010)88817519

物料号: 190900001

《自然》百年科学经典(英汉对照版)

编委会

英方编委:

中方编委(以姓氏笔画为序):

Philip Ball

许智宏

Vikram Savkar

赵忠贤

David Swinbanks

滕吉文

本卷审稿专家(以姓氏笔画为序)

马宇蒨	王鹏云	邓祖淦	田伟生	吕 扬	朱永生	刘 力
刘 纯	刘京国	江丕栋	李芝芬	李军刚	李 淼	汪长征
沈宝莲	张元仲	张忠杰	张泽渤	张焕乔	陈平富	林圣龙
尚仁成	昌增益	金 城	周筠梅	赵见高	秦志海	顾孝诚
陶宏杰	葛墨林	蒋世仰	程祝宽	鲍重光		

Contents

目录

Evidence for a Stellar Origin of the Cosmic Ultra—penetrating Radiation	
宇宙超穿透性辐射起源于恒星的证据	3
Stellar Structure and the Origin of Stellar Energy	10
恒星的构造和恒星能量的起源	
Embryology and Evolution 胚胎学与进化	
此加子→足化	25
Embryology and Evolution	28
胚胎学与进化	29
Stellar Structure	20
恒星的构造	
Vitamin B: Assay and Vitamin B ₁	36
维生素B检验与维生素B ₁	37
Vitamin B: Vitamins B₂ and B₃: Bios	44
维生素B——维生素B2和 B3: 生长素	
Vitamin B: Distribution and Physiology	5 2
维生素B——分布与生理学	52
Stellar Structure	
恒星的构造	61
Present Status of Theory and Experiment as to Atomic Disintegration	
and Atomic Synthesis	
原子衰变与原子合成的理论和实验现状	67
Stellar Structure	82
恒星的构造	
New Aspects of Padioactivity	0.5
New Aspects of Radioactivity放射性研究的新面貌	86 87

Protein Structure and Denaturation102	
蛋白质的结构与变性103	
The End of the World: from the Standpoint of Mathematical Physics108	
以数学物理的视角看宇宙的终点109	
Chemistry of Vitamin B ₂ 130	
维生素B₂的化学性质131	
Stellar Structure134	,
恒星的构造135	;
The Molecular Weights of Proteins140)
蛋白质的分子量141	
Cytological Theory in Relation to Heredity148	}
遗传的细胞学理论149	
Obituary164	ļ
讣告165	,
The Peking Skull	ļ
北京人的头骨175	ĵ
Recent Advances in the Chemistry of the Vitamins	ļ
维生素在化学方面的新进展	
The Annihilation of Matter194	1
物质的湮灭195	5
Oxidation by Living Cells220)
活细胞氧化221	
Atomic Synthesis and Stellar Energy232	2
原子合成与恒星能量233	
Oestrus-Producing Hormones242	2
催情激素245	
Quantum–Mechanical Models of a Nucleus246	5
原子核的量子力学模型247	

The Angular Momentum of Light	254
光的角动量	255
Isolated Quantised Magnetic Poles	258
孤立的量子化磁极	
The Biological Nature of the Viruses	262
病毒的生物学本质	
Maxwell and Modern Theoretical Physics	276
麦克斯韦与现代理论物理	277
Progressive Biology	282
生物学的进展	283
The Internal Temperature of White Dwarf Stars	292
白矮星的内部温度	293
Experimental Proof of the Spin of the Photon	298
光子自旋的实验证据	
A Possible Hydrogen Isotope of Mass 2	302
氢可能具有质量数为2的同位素	303
Hydrogen Liquefaction Plant at the Royal Society Mond Laboratory	304
皇家学会蒙德实验室的氢液化车间	305
The Decline of Determinism	314
决定论的衰落	315
News and Views	340
新闻与观点	341
Artificial Production of Fast Protons	344
快质子的人工产生	345
Crystal Structures of Vitamin D and Related Compounds	346
维生素D及其相关化合物的晶体结构	
Possible Existence of a Neutron	352
可能存在中子	353

Determinism	356
决定论	357
Determinism	360
决定论	
Hexuronic Acid as the Antiscorbutic Factor	362
作为抗坏血病因子的己糖醛酸	
Disintegration of Lithium by Swift Protons	370
由快质子引起的锂衰变	
The Cry of Tin	374
锡叫	
The Expanding Universe	378
膨胀的宇宙	
The Neutron Hypothesis	380
中子假说	
White Dwarf Stars	382
白矮星	
New Evidence for the Neutron	386
关于中子的新证据	
Mechanism of Superconductivity	390
超导电性机理	
Disintegration of Light Elements by Fast Protons	396
快质子引起的轻元素衰变	
A Synthetic Oestrus-Exciting Compound	
一种合成的催情化合物	399
Origin of Tektites	404
玻陨石的成因	405
Energy of Cosmic Rays	
宇宙射线的能量	411

Helium Liquefaction Plant at the Clarendon Laboratory, Oxford 牛津大学克拉伦登实验室的氦液化车间	414
1 / 中/ () / Line () / M	
Structure and Division of Somatic Chromosomes in Allium	
葱属植物体细胞染色体结构与分裂	421
Recent Researches on the Transmutation of the Elements	424
关于元素嬗变的最新研究	
Number of Mendelian Factors in Quantitative Inheritance	430
数量遗传学中孟德尔因子的数量	
Light and Life	121
光与生命	
Nuclear Energy Levels核能级	
New Evidence for the Positive Electron	
有关正电子的新证据	459
The Physical Nature of the Nerve Impulse	
神经冲动的物理学本质	463
A New Alloy, "Stainless-Invar"	490
一种新型合金——"不生锈的因瓦合金"	491
Amino-Acids, Proteins and Proteolytic Enzymes: I	492
氨基酸、蛋白质和蛋白质水解酶	
Amino–Acids, Proteins and Proteolytic Enzymes: II	506
氨基酸、蛋白质和蛋白质水解酶 II	
Nature of Cosmic Rays	E16
宇宙射线的性质	
Standard of Alleva	<u>-</u>
Structure of Alloys	
A Possible Property of the Positive Electron 正电子可能具有的性质	546
エモ」 り 配対 H町 圧火	54/

Crystals of the Living Body	548
活生物体中的结晶	
Date and Place of Priestley's Discovery of Oxygen	568
普里斯特利发现氧气的日期和地点	
Chemical Test for Vitamin C, and the Reducing Substances Present	F76
in Tumour and Other Tissues 肿瘤以及其他组织中所含的维生素C等还原性物质的化学检测	
肝瘤以及其他组织中加含的维生素C等近凉性初次的化子位例	
Mitosis and Meiosis	582
有丝分裂与减数分裂	583
Positrons and Atomic Nuclei	599
正电子和原子核	
T 6) 10/0/0 1/2	,,,,,,,,,,,,,,,,,
Liquid Crystals	592
液晶	593
Magnetic Moment of the Proton	608
质子的磁矩	
Interaction between Cosmic Rays and Matter	
宇宙射线与物质之间的相互作用	613
The Genetics of Cancer	616
肿瘤遗传学	617
Notice Distribution of Open a in the Atmosphere	626
Vertical Distribution of Ozone in the Atmosphere	
Vitamin A in the Retina	630
视网膜中的维生素 A	631
Disintegration of Light Atomic Nuclei by the Capture of Fast Neutrons	634
轻核俘获快中子产生的核衰变	
Extremely Low Temperatures	
极低温	639
Some Chemical Aspects of Life	646
生命的某些化学面貌	

The Activity of Nerve Cells	688
神经细胞的活性	689
Recent Developments in Television	704
电视技术的最新进展	705
Heavy Hydrogen and Heavy Water	
重氢和重水	717
Internal Temperature of Stars	
恒星的内部温度	731
X–Ray Analysis of Fibres	
纤维的X射线分析	735
Production of High Magnetic Fields at Low Temperatures	
低温下强磁场的产生	743
Natural Colouring Matters and Their Analogues	746
天然染色物质及其类似物	747
Atomic Transmutation and the Temperatures of Stars	760
原子嬗变和恒星温度	761
Free Radicals	764
自由基	765
The Origin of Tektites	774
玻陨石的成因	775
The Origin of Tektites	778
玻陨石的成因	
New Results in Cosmic Ray Measurements	780
宇宙射线测量中的新结果	
Interaction of Hard γ–Rays with Atomic Nuclei	792
硬γ射线和原子核的反应	
A Suggested Explanation of β–Ray Activity	796
B. 射线放射性的——和可能的解释	797

The General Nature of the Gene Concept	800
有关基因概念的一般本质	801
Latitude Effect of Cosmic Radiation	812
宇宙射线的纬度效应	813
Atomic Transmutation and Stellar Temperatures	816
原子嬗变和恒星温度	817
Oxygen Affinity of Muscle Haemoglobin	820
肌肉中血红蛋白的氧亲合力	821
The Positive Electron	824
正电子	825
Heavy Hydrogen	836
重氢	837
Possible Chemical Nature of Tobacco Mosaic Virus	844
烟草花叶病毒的可能化学本质	
Appendix: Index by Subject	
附录: 学科分类目录	849

Volume II (1931-1933)

Evidence for a Stellar Origin of the Cosmic Ultra-penetrating Radiation

V. F. Hess

Editor's Note

Physicists were still pondering the nature of cosmic rays. Earlier studies failed to find any evidence that the Sun emitted such rays, but here Victor Hess reports new experiments showing that it does. As he notes, recent experiments at high altitude in the Swiss Alps found the average intensity of radiation to be higher during the day and lower at night. Further experiments with lead shielding showed that the Sun's light included a component of highly penetrating rays, with intensity equal to about 0.5 percent of the total observed cosmic ray intensity. Hess argues that cosmic rays most probably have a stellar origin, as all other stars probably emit them much as the Sun. The precise nature of these particles remained unknown.

WHILE in former years all observers were agreed that the sun does not contribute any noticeable amount to the total intensity of the cosmic ultra-radiation, the increase in the sensitivity of the apparatus used within recent years, and the increase in the number of observations made at different stations and under different experimental conditions, makes it possible to investigate once more whether the influence of the sun is altogether negligible.

Very accurate and trustworthy registrations of the cosmic radiation have been carried out with Prof. G. Hoffmann's high-pressure ionisation chamber at Muottas Muraigl (2,456 m. above sea-level) in the Engadine. These measurements show, beyond any doubt, that the average intensity of the radiation is somewhat greater in daytime than during the night. G. Hoffmann and F. Lindholm¹ give the average difference between day and night intensities as 0.12 mA., $\sim 0.0125 \text{ ions per c.c.}$ per sec. while the apparatus was unscreened from above, and 0.04 mA., $\sim 0.0042 I$ with a lead-screening of 6 cm. and 9 cm. thickness. (The letter "I" always denotes "ions per c.c. and sec.".) F. Lindholm,² with the same apparatus, found from longer series of observations (8 months) the values in the accompanying table (see Table 6 of his paper).

In Hoffmann and Lindholm's apparatus a compensation current of one milliampere corresponds to an ionisation of 0.104 *I*. Therefore the total intensity of the ultra-radiation with the apparatus unscreened from above was about 2.50 *I* at Muottas Muraigl.

The difference between day and night intensity can be taken, provisionally at least, as the actual intensity of the solar penetrating radiation. One can see at once that at Muottas

宇宙超穿透性辐射起源于恒星的证据

维克托·赫斯

编者按

物理学家们仍在思考宇宙射线的性质。以前的研究未能找到任何证据证明太阳发射了这类射线,如今维克托·赫斯报告了他用新的实验结果说明确实如此。正如他所指出的,在瑞士阿尔卑斯山上的高海拔区进行的一项最新实验发现,辐射的平均强度白天比晚上高。采用钻屏蔽板以后再作的实验表明,太阳光中包含一个穿透力很强的射线成分,其强度约为宇宙射线总观测强度的0.5%。赫斯认为宇宙射线很可能起源于恒星,因为除太阳以外所有其他恒星发射的宇宙射线很可能与太阳发射的一样多。这些粒子的确切性质现在还不清楚。

在过去,所有的观测者一致认为,在宇宙超级辐射的总强度中,太阳没有任何 值得注意的贡献。近年来,随着观测仪器灵敏度的不断增强,以及在不同国家、不 同实验环境下进行的观测次数不断增多,于是有可能再一次研究由太阳造成的影响 是不是可以完全忽略不计。

有人把霍夫曼教授的高压电离室放在瑞士恩加丁地区的穆拉古尔山(海拔 2,456 m)上,由此得到了一些非常准确而且可靠的有关宇宙辐射的数据。这些测量结果毫无疑问地说明白天的平均辐射强度要略高于夜晚。霍夫曼和林霍尔姆四给出了昼夜间强度差异的平均值:当仪器上方没有屏蔽时,平均值为 0.12 mA,或~ 0.0125 个离子每立方厘米每秒;当使用 6 cm 和 9 cm 厚的铅板屏蔽时,平均值是 0.04 mA,~ 0.0042 I(符号"I"通常表示"每立方厘米每秒的离子数")。林霍尔姆 [2] 使用同样的仪器进行了更长期的观测(8 个月),所得数据列于附表中(参见他文章中的表 6)。

在霍夫曼和林霍尔姆使用的仪器中,一个 1 mA 的补偿电流相当于 0.104 *I* 的电离值。由此得出,在穆拉古尔山上由顶部没有铅板屏蔽的仪器测得的超级辐射的总强度大约为 2.50 *I*。

我们至少可以暂时把昼夜间的强度差视为太阳贯穿辐射的实际强度。于是马上就可以看到在海拔 2,456 m 的穆拉古尔山上,大约有一半这类太阳辐射成分能够穿

Muraigl, 2,456 m. above sea-level, about one-half of this solar radiation component is able to penetrate through 10 cm. of lead. This component is therefore far more penetrating than the gamma rays from radioactive substances. If we assume that all of the above-mentioned 0.011 I is of solar origin, we can compute the absorption coefficient in lead μ_{Ph} (it will suffice to take the case of perpendicular incidence) from the equation $I = I_0 e^{-\mu_{Ph}} d$ taking $I_0 = 0.011$, I = 0.0058, and d = 10 cm.; thus we obtain $\mu_{Ph} = 0.064$ cm. ¹ and the mass absorption coefficient $\left(\frac{\mu}{\rho}\right)_{Ph} = 5.7 \times 10^{-3}$ cm. ²/gm.

This value is almost exactly equal to the mass absorption coefficient value of the total cosmic radiation at the same altitude $((\mu/\rho)_{p_b} = 6.3 \times 10^3 \text{ cm.}^2/\text{sec.}$ as found by Büttner on the Eiger glacier 2.3 km. above sea-level).3 If we assume that part of the (0.011 I) difference between day and night values with unscreened apparatus is due to an increase in the average content of radium emanation and its products in the air during daytime, then we should get an even more pronounced hardness of the solar penetrating rays, that is, a smaller value for their mass absorption coefficient. Therefore we are justified in concluding that the sun emits penetrating rays of at least the same penetrating power as the well-known cosmic ultraradiation. The total amount of the solar penetrating rays (at 2,456 m. above sea-level) is about onehalf percent of the total intensity of the cosmic radiation, as it is seen from the accompanying table. Of course, one might think it possible to explain the increase in the total radiation during daytime as due to an indirect influence of the sun (that is, an increase in the scattering of the ultra-rays by the heating of the atmosphere during the day). In this case, however, one would expect that this scattered radiation, represented by the difference between the day and night values, would be much softer than the general cosmic radiation; but this is in contradiction to the experimental results analysed above.

Recent observations of R. Steinmaurer⁴ on the summit of the Sonnblick (3,100 m. above sea-level) in the summer of 1929, made with three different instruments (two of the Kolhörster double loop-electrometer type and one of the Wulf-Kolhörster type), also show clearly that the total ultra-radiation in daytime is slightly higher than at night; the difference amounts to about 0.7 percent (0.06 *I*, average difference for the three forms of apparatus mentioned above, the total intensity on the Sonnbick being about 8.7 *I* with the screening open on the top). The increase of radiation was also observed with apparatus screened with 7 cm. iron all around, but the number of these observations on the Sonnblick is not sufficient for quantitative calculations. It may be mentioned that even in the old observations on the summit of the Obir (2,000 m. above sea-level), made by V. F. Hess and M. Kofler,⁵ the solar influence is noticeable (the total intensity of the ultra-radiation plus earth-radiation during the day being 11.11, during the night 11.09 *I*, in the average for 13 months), although at that time the apparatus were not screened from the earth radiation. The difference of 0.02 *I* was—at that time—considered as practically amounting to zero.

Observations with apparatus of the Wulf- or Kolhörster type for shorter periods (like those of Kolhörster-v. Salis on the Jungfraujoch, on the Mönch, and of Büttner at other places

过 10 cm 厚的铅板。因此这部分辐射的穿透性大大高于放射性物质发出的 γ 射线。如果我们假设所有上述的 0.011 I 全部起源于太阳,我们就可以根据方程 $I=I_0e^{-\mu_{tred}}$ 计算出铅的吸收系数 μ_{Pb} (只考虑垂直入射的情况已经足够),代入 $I_0=0.011$,I=0.0058 和 d=10 cm,我们得到 $\mu_{Pb}=0.064$ cm⁻¹ 和质量吸收系数 $\left(\frac{\mu}{\rho}\right)_{Pb}=5.7\times10^{-3}$ cm²/g。

这个数值几乎精确地等于所有宇宙辐射在这个高度上的质量吸收系数(比特纳在海拔 2.3 km 的艾格尔冰川上的测量值为 $(\mu/\rho)_{Pe}$ = 6.3×10^3 cm²/sec)。[3] 如果我们假设在没有屏蔽层的仪器上测量到的昼夜间差异(0.011 I)中,有一部分是由于白天空气中镭射气和其产物的平均含量上升引起的,那么我们观察到的太阳贯穿射线会更硬,即它们的质量吸收系数会更小。因此我们认为以下结论是合理的:太阳发出的贯穿射线的穿透能力至少与著名的宇宙超穿透辐射相当。太阳贯穿射线的总量(在海拔 2,456 m 处)大约占宇宙辐射总强度的 0.5%,如附表所示。当然,有人可能将白天辐射总量的升高解释为受太阳间接影响所致(即白天被加热的大气增加了对超穿透射线的散射)。然而在这种情况下,因散射造成的辐射——由昼夜间辐射量的差异表示,会比一般的宇宙辐射更软,而这与上面分析的实验结果是矛盾的。

1929年夏天,斯坦莫勒^[4]在松布利克山峰顶(海拔约3,100 m)用三种不同仪器(两台柯尔霍斯特型双环静电计和一台伍尔夫—柯尔霍斯特型)的最新观测也明确显示出测量的超级辐射总量白天的数值略高于夜晚,差值大约为0.7%(用上面提到的三种仪器测量的差值取平均后得到0.06 *I*,顶部没有屏蔽的仪器在松布利克山测量的总强度约为8.7 *I*。)当仪器四周用7 cm 厚的铁板屏蔽时仍然可以观测到辐射量的增加,但是在松布利克山上的观测次数太少不足以作出定量计算。人们也许会提到即使从之前赫斯和科夫勒^[5]在奥柏(海拔2,000 m)山顶的观测数据中也可以看出太阳带来的影响(超级辐射加上地球辐射的总强度在13个月中的平均值:白天为11.11 *I*,晚上为11.09 *I*),尽管那时的仪器没有屏蔽掉地球辐射的影响。0.02 *I* 的差别在当时几乎可以被看作是零。

至于使用伍尔夫型或柯尔霍斯特型仪器进行的短周期观测(比如冯萨利斯在少女峰和修士峰以及比特纳在阿尔卑斯山其他地方用柯尔霍斯特型仪器所做的观测),