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Preface

Why is quantum field theory of condensed matter physics necessary?

Condensed matter physics deals with a wide variety of topics, ranging
from gas to liquids and solids, as well as plasma, where owing to the inter-
play between the motions of a tremendous number of electrons and nuclei,
rich varieties of physical phenomena occur. Quantum field theory is the most
appropriate “language”, to describe systems with such a large number of de-
grees of freedom, and therefore its importance for condensed matter physics
is obvious. Indeed, up to now, quantum field theory has been succesfully ap-
plied to many different topics in condensed matter physics. Recently, quan-
tum field theory has become more and more important in research on the
electronic properties of condensed systems, which is the main topic of the
present volume.

Up to now, the motion of electrons in solids has been successfully de-
scribed by focusing on one electron and replacing the Coulomb interaction
of all the other electrons by a mean field potential. This method is called
mean field theory, which made important contributions to the explanantion
of the electronic structure in solids, and led to the classification of insulators,
semiconductors and metals in terms of the band theory. It might be said that
also the present achievements in the field of semiconductor technology rely
on these foundations.

In the mean field approximation, effects that arise due to the correlation
of the motions of many particles, cannot be described. It has been treated
in a perturbative way under the assumption that its effect is small. How-
ever, recently, many systems that cannot be described in this standard way
have been discovered, and it became clear that a new world opened its doors.
Connected to these new aspects of condensed matter physics, the most funda-
mental problem of quantum theory — the duality between the particle picture
and the wave picture — appeared in a very striking way. This particle-wave
duality appears in the framework of many-particle quantum field theory as a
canonical conjugate relation between the particle number and the quantum
mechanical phase.

From this point of view, in systems where the strong repulsive force be-
tween the particles fixes the particle number, as is the case, for example, for
the Mott insulator and the Wigner crystal, the charge density and the spin
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density waves are stabilized and the system shows its particle-like face. On the
other hand, when the motions of the particles lead to coherence of the quan-
tum mechanical phase, as is the case in superconductors and superfluids, the
phase is fixed and becomes visible, and the system shows its wave-like face.
The competition between both appears in low-dimensional systems and meso-
scopic systems in a very clear manner. Problems like the quantum Hall effect,
high-temperature superconductors, organic conductors, metal-insulator tran-
sition, superconductor-insulator transition, can all be grasped from this point
of view.

The new problems-that arise due to this competition are given in the
following three points.

(i) Quantum phase transition or quantum critical phenomena —In contrast
to the phase transition at finite temperature due to the competition between
energy and entropy, these are phase transitions that occur at the absolute
zero temperature or low temperature due to quantum fluctuations.

(ii) Novel ground states and low-energy excitations — New types of quan-
tum states have been discovered, such as non-Fermi liquids in relation to
high-temperature superconductors, and incompressible quantum liquids in
relation to the quantum Hall system. Their elementary excitations, the spinon
and the holon, are anyons obeying fractional statistics.

(iii) The quantal phase and its topological properties — The topological
aspects of the quantal phase, including the topological defects, show up in
the physical properties of solids. Especially, when due to some kind of con-
straint a gauge field is introduced, phenomena that are also discussed in
quantum chromodynamics reappear with some modifications in condensed
matter physics. ,

The present book has been written for graduate students and researchers
who are not necessarily specialists in quantum field theory. Starting with a
short review of quantum mechanics, the framework of quantum field theory
is introduced and applied to problems that are uppermost in the present
research in condensed matter physics.

In Chap. 1, most basic principles are reviewed. Topics that are not only
important in single-particle quantum mechanics but also in quantum field
theory are recalled, namely, canonical conjugate relation, symmetry and the
conservation law, and the variation principle. This analogy between single-
particle quantum mechanics and quantum field theory can be efficiently
applied when quantization is performed using path integral methods, as pre-
sented in Chap. 2. The coordinate and momentum in the single-particle prob-
lem correspond in the many-particle system to the phase and the amplitude
of the quantum field. A similar analogy can be applied for the gauge field and
the spin system. In Chap. 3, phase transitions are discussed, being character-
istic of field theories, because they cannot occur in systems with only a small
number of degrees of freedom. This topic is one fundamental concept of mod-
ern condensed matter physics and is developed further to systems where it is
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difficult to define an order parameter. As examples, the Kosterlitz—Thouless
transition, being a topological phase transition that will reappear later on in
a different context, and the problem of colour-confinement in gauge theory,
are discussed.

After these preliminaries, starting from Chap. 4, explicit applications of
quantum field theory to condensed matter physics are discussed. The content
of Chap. 4 is a warming up, where representative examples of a fermionic sys-
tem and a bosonic system are presented, namely the classical RPA theory
of an electron gas and the Bogoliubov theory of superfluidity. It is demon-
strated that the method of path integrals provides the clearest formulation of
the problems. In Chap. 5, many different problems related to superconductors
are discussed. Problems that have so far been treated independently, namely
the renormalization of the Coulomb interaction, collective modes and gauge
invariance in BCS theory, are discussed in a unified approach. In the second
part of Chap. 5, the Josephson junction and the two-dimensional supercon-
ductor are discussed, being an issue of current interest. In Chap.6, the new
quantum state of the (fractional) quantum Hall liquid is discussed within the
framework of the Chern-Simons gauge field.

Of course, it is not possible to discuss all the applications of quantum
field theory here; therefore, our intention is to reveal their common structure
and ideas that provide the tools necessary for further studies.

I owe special thanks to my supervisors and colleagues, especially E. Hana-
mura, Y. Toyazawa, P. A. Lee, H. Fukuyama, S. Tanaka, M. Imada, K. Ueda,
S. Uchida, Y. Tokura, N. Kawakami, A. Furusaki, T.K. Ng, and Y. Ku-
ramoto.

Tokyo, January 1999 Naoto Nagaosa
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1. Review of Quantum Mechanics
and Basic Principles of Field Theory

The content of this chapter is nothing but a review of the most basic princi-
ples. Starting with the quantum mechanics of a single-particle system, then
the canonical conjugate relations, the relation between symmetries and con-
servation laws, the description of multi-particles systems using field theory,
finally gauge invariance and the gauge field will be introduced, all being fun-
damental concepts that built the basis for the whole following discussion. The
reader should reconfirm the universality of the quantum mechanical descrip-
tion and get a taste of the efficiency of an analogy.

1.1 Single-Particle Quantum Mechanics

We start by recalling some facts about single-particle quantum mechanics.
All points that will be mentioned here will again become important when
proceeding to quantum field theory.

The equation of motion of the single-particle system is given by the
Schrédinger equation:

iha—lp(a%:l = ﬁgp(r,t) = [% - V(i")] P(r,t) . (1.1.1)

¥(r,1) is the so-called wave function, depending on the space coordinates 7
and the time ¢. H is the so-called Hamiltonian operator, creating a new wave
function Hy(r, t) by acting on the wave function %(7,t). In what follows,
operators are assigned by a hat, except for obvious cases where this notation
will be omitted. $ and # are three-component vector operators that represent
the momentum and space coordinate of the particle, respectively. $2/2m
is the kinetic energy, V(#) the potential energy, and its sum is the total
energy of the particle, called the Hamiltonian operator H. Equation (1.1.1)
signifies that the time development of the wave function is determined by the
Hamiltonian operator H. By defining the exponential exp(A) of an operator
by

oo

exp(d) = 3 %(A)" , (1.1.2)

n=0
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its solution can be written as
¥(r,t) = exp (——;_;I?t) P(r,0) . (1.1.3)

In quantum mechanics, the wave function is interpreted in terms of prob-
ability. The square of the absolute value of the wave function

P(r,t) = [9(r, 1) (1.1.4)

is interpreted as the probability of detecting the particle at time ¢ at the
coordinate r. Therefore, because the sum (integral) of the probability over
the whole space is 1, we obtain the normalization condition of the wave
function:

/dsr P(r,t) = /d3r|¢(r, =1 . (1.1.5)

We will now explain the matrix formulation of quantum mechanics. We
interpret the function f(r) as a vector in the Hilbert space (the vector space
of functions) and write |f) for the state that the function represents. Doing
so, the operator A acting on the vectors in this space generates a new vec-
tor, which is a linear transformation. Therefore, it corresponds to a matrix.
Furthermore, to every vector |f), there exists the conjugate vector (f|, being
specified as the so-called ket- and bra-vector, respectively. Thinking in com-
ponents, the bra-vector (f| can be regarded as the transposed and complex
conjugate of the ket-vector |f). The inner product (g | f) in this vector space
is defined by

ol = [ &ra*@)sr) = (flo)* - (116)
The matrix element (g|A|f) of the operator (the matrix) A is given by

(gl Alf) = (glAf) = / Bro* (R Af(r) . (1.1.7)

In order to give a more concrete picture of the considerations made so far, we
introduce now an orthonormal basis |i},i = 1,2,3..., of the Hilbert space.
(We wrote 2 = 1,2,3...; however, the basis is not necessarily a countable
set. In general, when the volume of the system is infinite, the set of basis
vectors is uncountable. In these cases, the sum )_; over the set labelled by
i must be replaced by an integral.) Because the basis is orthonormal, the
orthonormality condition

(il7) = 6i; (1.1.8)

and the completeness condition
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>l =1 (1.1.9)

hold. Here, the so-called Kronecker delta §; ; is defined to equal 1 when i = j,

and to be zero otherwise. 1 is the identity matrix; in other words, the identity
operator. In this basis, the vector |f) can be represented by its components:

|f) =Z|i)(ilf) DI DI (1.1.10)

7

Furthermore, the component representation of A f) is given by
Alf) = (Z |z'><i|)fi<2 |j><j|) 1£)
i J
=Y " 1a) (il A5} £) (1.1.11)
4,3

and (1.1.7) can be written as

(9lAlIf) =D (gl GIALGIF) - (1.1.12)

i’j

We define the Hermitian conjugate At of A by requiring that

(9|Alf) = (Alg|f) (1.1.13)
holds for every |f) and |g). Comparing the inner product of the conjugate of
|ATg) = " 15) (il Atl4) (ilg) (1.1.14)
3t
with |f) and
(Atglf) = (gli)GIATIE)* (41 ) (1.1.15)
j’i
with (1.1.13), we obtain
(| AT|3) = GIA]7)* . (1.1.16)

This is nothing but the usual definition of the Hermitian conjugation of a
matrix. In the case that A and At are equal A = A’f, A is called a Hermitian
operator. In quantum mechanics, all physical quantities are represented in
terms of Hermitian operators.

We now introduce the eigenvalue a and the eigenstate |a) of the Hermitian
operator A:

Ala) = ala) . ' (1.1.17)
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By taking the inner product with |a)
(a|A|a) = a{ala) (1.1.18)
we can deduce that at the left-hand side due to hermiticity
(a|Ala) = (Atala) = (Aala) = a*(ala) (1.1.19)

holds, and obtain a = a*. Therefore, we conclude that the eigenvalue a is
real. Furthermore, for a # a’ with

(a'|A = a'(d| (1.1.20)
from (1.1.19) we can deduce that
(d/|Ala) = a(d'|a) = o (a’|a) (1.1.21)

and conclude that (a’ | a) = 0. This signifies that the eigenstates of a Hermi-
tian operator with different eigenvalues are orthogonal to each other. There-
fore, by a suitable normalization it is possible to build an orthonormal ba-
sis using the eigenstates of an Hermitian operator by orthogonalizing in
eigenspaces belonging to the same eigenvalue.

Naturally, the space coordinate 7 is a Hermitian operator. Every compo-
nent 7o Of 7 acts on f(#)

'Faf(r) == Taf(r) (1.1.22)

creating a new function. Notice that on the right-hand side, 7, is no longer
an operator, but the a-component of the function r. The generalization of
(1.1.22) is

V(#) f(r) =V (r)f(r) (1.1.23)

with V(#) being the potential energy of equation (1.1.1). With (1.1.22) we
write

(glfalf) = / & g (r)faf(r) = / &P g*(F)raf(r) = ] &Br [rag(r)]* f(r)
= [ & Fag(r)* 1) = (Faslf) - (1.1.24)

It should be clear from these equations that 7, is Hermitian.
We introduce now the state |r) being the eigenstate with eigenvalue 7 of
the operator #:

Flr) =r|r) . (1.1.25)
Because (r’ | ) = 0 for r # 7/,

(r'lr) =6(r —7') , (1.1.26)
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. with an appropriate choice of the normalization. Here we have introduced
the so-called delta function §(r — 7’), defined to be zero for r # 7/, and
infinite at 7 = 7/, and to give the value 1 when integrated over » — 7/ in a

region containing the origin. Furthermore, |r) and (r| fulfil the completeness
relation

/d3r|r)('r| =1. (1.1.27)

The reader not familiar with the delta function is referred to the Appendices
A and B. As mentioned there, we can introduce a vector space on a discrete
lattice. The components of a vector in this space are defined by the values
of a function on the discrete lattice points. This vector space approaches
the Hilbert space when the number of lattice points Ny, becomes infinite,
that is, when the lattice spacing Az becomes zero. In this case, the sum
(A3 T ision points i approaches the three-dimensional integral appearing in
(1.1.6). As a basis of the Ni-dimensional vector space, we define states that
are zero at all lattice points except for the coordinate r;, where the value is
definded to be 1/(Az)3/2. Then we have

brom,
rnrk rkyr] it Ti,Tj
(rilrs) = Z (Az)3/2 (Az)32 ~ (Ax)?

and, furthermore,
(Az)*) I =1 .

In the limit as Az — 0, these equations approach the equations of the inner
product and the completeness relation of the basis 7 mentioned above.

Now, owing to the completeness relation of the basis r, we can write the
inner product (1.1.6) as

(lf) = / &r (glr)rlf) (1.1.28)
and obtain
) =(rlf) e
" (r) = (glr) -

From this point of view, the wave function %(r,t) is nothing but the -
component of the state vector |4(t)) of the Hilbert space written in the basis
7).

Now, what about the momentum operator p ? Here, we meet the very first
example of the most fundamental relation in quantum mechanics, namely the
canonical conjugation relation. A plane wave with wave number vector k can
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be expressed as i (r) = (27h)~3/2 e**. Writing the plane wave as a function
of r, and using

. . h.ad
p=<5 (1.1.30)
we obtain
PYx(r) = hkyr(r) = pr(r) (1.1.31)

and therefore the relation p = hk. We now deﬁne the following combination
of # and p:

[fas gl = Fabp — Ppfa - (1.1.32)

This is the so-called commutator of #, and p,, which is also an operator.
Acting with this commutator on an arbitrary function f(r), we obtain

ool r) = (a5 = St ) 507
= {re 2 - 2 raf(r)) } = s
and therefore the identity
[Fa) 6] = ihbap - (1.1.33)

This is the so-called commutation relation. It follows from (1.1.33) for a = 3
that [fo,Po] = ih. This means that #, and p, are canonical conjugates of
each other. This commutation relation, as well as (1.1.30), is the starting
point for many very fundamental and wide conceptual developments that
will be discussed in what follows. However, we first discuss some aspects of
the eigenstates of p. We can interpret (1.1.31) as

plp = plp) , (1.1.34)

1 i

<”‘|p> = ‘([)p/h('l‘) = W exp (Ep- 'I') B (1135)

|p) also spans a basis; orthogonality can be shown with

@lp) = [ &r @ir)rip)
d3r j-! oy !
_ Ly N s el 1.1.36
/(2wh)3 exp [h( P +p) 1‘] ®-9) ( )
and, in the same manner, the completeness relation

[@rinol =1 (1..37)
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by acting on it with (/| and |r) on the left- and right-hand sides:

J 2Bl = [ 2 e[ - )]
=6(r—r)=(Ir) . (1.1.38)

Equations (1.1.26), (1.1.27), (1.1.36) and (1.1.37) are the basic relations of
the Fourier analysis, because

d3p

Wei""/h(plﬁ (1.1.39)

1) = rln = [Ep rip)els) =
is the Fourier representation of f(r) in terms of (p | f) = F(p), and the
inversion of this Fourier transformation can be written as

d3r

(27h)3/2 e T/hf(r) . (1.1.40)

F(p) = (pl1) = [@r (plr)irls) =
We conclude that the Fourier transformation is the basis transformation that
links the two basis sets (coordinate sets) |r) and |p) in the Hilbert space. (Ex-
planations about the Fourier transformation can be found in Appendix A.)
We now return to the commutation relation and discuss its meaning in
more detail. First, Heisenberg’s uncertainty principle can be deduced from
(1.1.33). We consider now the expectation values 7o = (Y|fq|9)) and po =
(¥|Pa|t) of 7o and P, in the state |1). As mentioned earlier, the interpretation
of quantum mechanics is only possible in terms of probabilities, and the
observed values of p, and 7, should follow a probability distribution around
each expectation value. The width of this distribution can in some way be
understood as the uncertainty, and in order to make it precise, we define the
so-called variation in the following manner:

(AF0)2) = ((Fa — (Fa))?) = (72) — (Fa)?
(APa)®) = ((Ba — (Ba))?) = (B2) — ()

We now introduce the Schwarz inequality. With A being an arbitrary complex
parameter

(1.1.41)

(|Afq + AAPal?) = ((Afa)?) + A* (Afadba) + A(APadia) -
+ [A((A%a)?) , (1.1.42)

we can deduce the Schwarz inéqua.lity from the fact that this expressionAmust
be positive, therefore

((AFa)?){((APa)?) Z [(Afadpa)l® - (1.1.43)

We make the following decomposition:
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P bz, Stol o 1| garn 1oy
Afy APy = 5{Ara,Apa} + E[Ara,Apa] ; (1.1.44)

where {A, B} = AB + BA is the so-called anti-commutator. Recalling that
both A7, and Ap, are Hermitian, it follows that the Hermitian conjugate of
the first term on the right-hand side of the above equation is

{Afa, Afa} = {Afay Afa: (1.1.45)

Therefore, its expectation value is real. On the other hand, the second term
equals

| BN 3 lios 2 ih
‘i[ATa, Apa] = §[ra,pa] = E (1.1.46)
and is therefore complex. Finally, we obtain
X aa 2 3. h h?
(Afalpa)l? = 3 ({Afa, Apa})? + - 2 o (1.1.47)
and, in combination with (1.1.43),
A \2 s \2\ > h
(AFa))(APa)) Z 7 - (1.1.48)

This is Heisenberg’s uncertainty principle. Normally, we forget about the
numerical factor and just write

AfqApe 2 B . (1.1.49)

No state exists that is an eigenstate of both 7, and p,, which means that
it is impossible to determine 7, and p, simultaneously, and the product of
the uncertainty must be larger than a number of the order of the Planck
constant.

We can deduce the following physical picture from the uncertainty prin-
ciple. As can be seen in (1.1.1), the Hamiltonian is the sum of the kinetic
energy $?/2m and the potential energy V(#). In classical mechanics, because
it is possible to determine p and 7 simultaneously, the ground state is given
by p = 0 and r = rg (being the minimum of V(r)). In quantum mechanics, it
follows from (1.1.49) that if we require p = 0, then 7 is totally undetermined,
and the gain of the potential energy is lost; on the other hand, if we require
r = 10, then p is totally undetermined, and the kinetic term becomes large.

Therefore, owing to the uncertainty principle, 7, and p, have a strained
relationship with each other. Let us make this more concrete. We start by
considering the one-dimensional harmonic oscillator with Hamiltonian

a_ P21 5.,
= — — T e 1
H 3 + gmwd (1.1.50)
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Writing Az for the width of the ground state |0) in coordinate space, and Ap
in momentum space, we can estimate the expectation value of the Hamilto-
nian or, in other words, the energy, by

E = (0|H|0) ~ M+ nuuz(Ax) ; (1.1.51)

We now insert the equation Ap « h/Az, obtained from the uncertainty

relation:

. o

This is only a function of Az. Calculating the minimum by 8E/9(Azx) = 0,

we obtain
B\ /2
A.’IJQ ~ (m) . (1.1.53)

This is the scale that lies behind the Hamiltonian (1.1.50), which can be

seen as the compromise point between two competing tendencies, namely the

kinetic energy requiring Ap = 0, and the potential energy requiring Az = 0
Inserting Azg in (1.1.52), it is easy to calculate the zero point energy:

Ey~hw .

In much the same manner this calculation can also be performed for the
hydrogen atom with the Hamiltonian

52 2
~ p [
H=—-—/. 1.1.54
2m |7 ( )
Inserting |p| o< i/r and |r| ox 7, we obtain
h? e?
- — . 1.1.55
2mr2  r ( )
Again, by calculating the minimum 9E/dr = 0 we obtain
h2
r~To = ;l? (1156)
and
B e — R = 05 (1.1.57)
0 H = 2h2 o s

Here, 1 is the so-called Bohr radius, and Ry is the Rydberg energy. We could
argue that the electron of the hydrogen atom does not fall into the nucleus
and that the atom does not collapse owing to the uncertainty principle.



