PEARSON

w2 @ B OO B E

YT

(SR3ZhR - SB4hR)

ANALYSIS

H.L. Royden + P.M. Fitzpatrick Fourth
Edition

H. L. Royden
HrBEKF +
€ Wi
DE=RPFMRHK

LA T Ak AR #

China Machine Press



SE 57 4

(R3ZhR - SB4hR)




English reprint edition copyright © 2010 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: Real Analysis, Fourth Edition (ISBN 978-0-13-
143747-0) by H. L. Royden and P. M. Fitzpatrick, Copyright © 2010.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A FBFE LR EN R i Pearson Education Asia Ltd. #2BUHLAE Tk tHAR#5h5 SHER .
FEHEEB@TE, FARUEAFRAEHIRDEEBNE,

NRTFHEARKNESEN (FEEFEEE. RNENTERENTEE S
X) HERST.

F353 W H Pearson Education (BiAEFEHRER) A IRE, TRE

ETBHE.

HETB R R HERR

[EBRE, S8R

FHERME ERTRARITESA

FHEWBICS: BF: 01-2010-3826

BEEMKR (CIP) HiR

Lo H (IR - 4T / (%) BHEE (Royden, H. L), EXRMIER
(Fitzpatrick, P. M.) 3. —itte JUR T LR, 2010.7

(B HRFIRFBE)

$4JF3C: Real AnalysisiFourth- Edition

ISBN 978-7-111-31305-2

1.5~ 0.0 % @ D.EHF-EKX I.01741

RERR A EBHCIPEEEF (2010) $1317455

P TR (EnsERE EFEA22E WSS 100037)
RiLgE. =847

LR ITEN 5 A R 2 B ENRI

20104£8 B E 1R 1 R EN R

150mm x 214mm - 16.125E[1%k

k452, ISBN 978-7-111-31305-2

EH: 49.007¢

WA, wARRT, AR, BRI, BFEETHiAR
ZARPEE. (010) 88378991, 88361066

Mgk, (010) 68326294, 88379649, 68995259
Hfainik. (010) 88379604

EEER: hzjsj@hzbook.com



Preface

The first three editions of H.L.Royden’s Real Analysis have contributed to the education of
generations of mathematical analysis students. This fourth edition of Real Analysis preserves
the goal and general structure of its venerable predecessors—to present the measure theory,
integration theory, and functional analysis that a modern analyst needs to know.

The book is divided the three parts: Part 1 treats Lebesgue measure and Lebesgue
integration for functions of a single real variable; Part II treats abstract spaces—topological
spaces, metric spaces, Banach spaces, and Hilbert spaces; Part III treats integration over
general measure spaces, together with the enrichments possessed by the general theory in
the presence of topological, algebraic, or dynamical structure.

The material in Parts II and III does not formally depend on Part I. However, a careful
treatment of Part I provides the student with the opportunity to encounter new concepts in a
familiar setting, which provides a foundation and motivation for the more abstract concepts
developed in the second and third parts. Moreover, the Banach spaces created in Part I, the
L? spaces, are one of the most important classes of Banach spaces. The principal reason for
establishing the completeness of the L? spaces and the characterization of their dual spaces
is to be able to apply the standard tools of functional analysis in the study of functionals and
operators on these spaces. The creation of these tools is the goal of Part 11

NEW TO THE EDITION

o This edition contains 50% more exercises than the previous edition

o Fundamental results, including Egoroff’s Theorem and Urysohn’s Lemma are now
proven in the text.

o The Borel-Cantelli Lemma, Chebychev’s Inequality, rapidly Cauchy sequences, and
the continuity properties possessed both by measure and the integral are now formally
presented in the text along with several other concepts.

There are several changes to each part of the book that are also noteworthy:

Part|

o The concept of uniform integrability and the Vitali Convergence Theorem are now
presented and make the centerpiece of the proof of the fundamental theorem of
integral calculus for the Lebesgue integral

s A precise analysis of the properties of rapidly Cauchy sequences in the L?( E) spaces,
1 < p < 00, is now the basis of the proof of the completeness of these spaces

o Weak sequential compactness in the LP(E) spaces, 1 < p < c0, is now examined in
detail and used to prove the existence of minimizers for continuous convex functionals.

iii
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Part Il

e General structural properties of metric and topological spaces are now separated into
two brief chapters in which the principal theorems are proven.

o In the treatment of Banach spaces, beyond the basic results on bounded linear
operators, compactness for weak topologies induced by the duality between a Banach
space and its dual is now examined in detail.

o There is a new chapter on operators in Hilbert spaces, in which weak sequential com-
pactness is the basis of the proofs of the Hilbert-Schmidt theorem on the eigenvectors
of a compact symmetric operator and the characterization by Riesz and Schuader of
linear Fredholm operators of index zero acting in a Hilbert space.

Part Il

¢ General measure theory and general integration theory are developed, including the
completeness, and the representation of the dual spaces, of the L”(X, u) spaces for,
1 < p < 00. Weak sequential compactness is explored in these spaces, including the
proof of the Dunford-Pettis theorem that characterizes weak sequential compactness
in LY{(X, ).
o The relationship between topology and measure is examined in order to characterize
the dual of C(X), for a compact Hausdorff space X. This leads, via compactness
arguments, to (i) a proof of von Neumann’s theorem on the existence of unique
invariant measures on a compact group and (ii) a proof of the existence, for a mapping
on a compact Hausdorf space, of a probability measure with respect to which the
mapping is ergodic.
The general theory of measure and integration was born in the early twentieth century. It
is now an indispensable ingredient in remarkably diverse areas of mathematics, including
probability theory, partial differential equations, functional analysis, harmonic analysis, and
dynamical systems. Indeed, it has become a unifying concept. Many different topics can
agreeably accompany a treatment of this theory. The companionship between integration
and functional analysis and, in particular, between integration and weak convergence, has
been fostered here: this is important, for instance, in the analysis of nonlinear partial
differential equations (see L.C. Evans’ book Weak Convergence Methods for Nonlinear
Partial Differential Equations [AMS, 1998]).

The bibliography lists a number of books that are not specifically referenced but should
be consulted for supplementary material and different viewpoints. In particular, two books
on the interesting history of mathematical analysis are listed.

SUGGESTIONS FOR COURSES: FIRST SEMESTER

In Chapter 1, all the background elementary analysis and topology of the real line needed
for Part I is established. This initial chapter is meant to be a handy reference. Core material
comprises Chapters 2, 3, and 4, the first five sections of Chapter 6, Chapter 7, and the first
section of Chapter 8. Following this, selections can be made: Sections 8.2—8.4 are interesting
for students who will continue to study duality and compactness for normed linear spaces,
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while Section 5.3 contains two jewels of classical analysis, the characterization of Lebesgue
integrability and of Riemann integrability for bounded functions.

SUGGESTIONS FOR COURSES: SECOND SEMESTER

This course should be based on Part II1. Initial core material comprises Section 17.1, Section
18.1-18.4, and Sections 19.1-19.3. The remaining sections in Chapter 17 may be covered at
the beginning or as they are needed later: Sections 17.3—17.5 before Chapter 20, and Section
17.2 before Chapter 21. Chapter 20 can then be covered. None of this material depends on
Part 11. Then several selected topics can be chosen, dipping into Part II as needed.

¢ Suggestion 1: Prove the Baire Category Theorem and its corollary regarding the partial

continuity of the pointwise limit of a sequence of continuous functions (Theorem 7 of

Chapter 10), infer from the Riesz-Fischer Theorem that the Nikodym metric space is

complete (Theorem 23 of Chapter 18), prove the Vitali-Hahn-Saks Theorem and then

prove the Dunford-Pettis Theorem.

Suggestion 2: Cover Chapter 21 (omitting Section 20.5) on Measure and Topology,

with the option of assuming the topological spaces are metrizable, so 20.1 can be

skipped.

o Suggestion 3: Prove Riesz's Theorem regarding the closed unit ball of an infinite
dimensional normed linear space being noncompact with respect to the topology
induced by the norm. Use this as a motivation for regaining sequential compactness
with respect to weaker topologies, then use Helley’s Theorem to obtain weak sequential
compactness properties of the LP(X, u) spaces, 1 < p < oo, if LI(X, p) is separable
and, if Chapter 21 has already been covered, weak-* sequential compactness results
for Radon measures on the Borel o-algebra of a compact metric space.

SUGGESTIONS FOR COURSES: THIRD SEMESTER

I bave used Part II, with some supplemental material, for a course on functional analysis,
for students who had taken the first two semesters; the material is tailored, of course, to that
chosen for the second semester. Chapter 16 on bounded linear operators on a Hilbert space
may be covered right after Chapter 13 on bounded linear operators on a Banach space, since
the results regarding weak sequential compactness are obtained directly from the existence
of an orthogonal complement for each closed subspace of a Hilbert space. Part II should be
interlaced with selections from Part III to provide applications of the abstract space theory
to integration. For instance, reflexivity and weak compactness can be considered in general
LP(X, ) spaces, using material from Chapter 19. The above suggestion 1 for the second
semester course can be taken in the third semester rather than the second, providing a truly
striking application of the Baire Category Theorem. The establishment, in Chapter 21, of the
representation of the dual of C(X), where X is a compact Hausdorff space, provides another
collection of spaces, spaces of signed Radon measures, to which the theorems of Helley,
Alaoglu, and Krein-Milman apply. By covering Chapter 22 on Invariant Measures, the
student will encounter applications of Alaoglu’s Theorem and the Krein-Milman Theorem
to prove the existence of Haar measure on a compact group and the existence of measures
with respect to which a mapping is ergodic (Theorem 14 of Chapter 22), and an application
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of Helley’s Theorem to establish the existence of invariant measures (the Bogoliubov-Krilov
Theorem).

I welcome comments at pmf@math.umd.edu. A list of errata and remarks will be
placed on www.math.umd.edu/~pmf/Real Analysis.
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Preliminaries on Sets,
Mappings, and Relations

Contents
Unions and Intersectionsof Sets . . . .. ... .................. 3
Equivalence Relations, the Axiom of Choice, and Zorn’s Lemma . . . . . . . 5

In these preliminaries we describe some notions regarding sets, mappings, and relations
that will be used throughout the book. Our purpose is descriptive and the arguments given
are directed toward plausibility and understanding rather than rigorous proof based on an
axiomatic basis for set theory. There is a system of axioms called the Zermelo-Frankel
Axioms for Sets upon which it is possible to formally establish properties of sets and thereby
properties of relations and functions. The interested reader may consult the introduction
and appendix to John Kelley’s book, General Topology [Kel75], Paul Halmos’s book, Naive
Set Theory [Hal98], and Thomas Jech’s book, Set Theory [Jec06].

UNIONS AND INTERSECTIONS OF SETS

Foraset A,! the membership of the element x in A is denoted by x € A and the nonmembership
of xin A is denoted by x ¢ A. We often say a member of A belongs to A and call 2 member of
A a point in A. Frequently sets are denoted by braces, so that {x | statement about x} is the
set of all elements x for which the statement about x is true.

Two sets are the same provided they have the same members. Let A and B be sets. We
call A a subset of B provided each member of A is a member of B; we denote this by A C B
and also say that A is contained in B or B contains A. A subset A of B is called a proper
subset of B provided A # B. The union of A and B, denoted by A U B, is the set of all points
that belong either to A or to B; thatis, AU B={x|x € A or x € B). The word or is used here
in the nonexclusive sense, so that points which belong to both A and B belong to A U B. The
intersection of A and B, denoted by A N B, is the set of all points that belong to both A and
B;thatis, AN B={x|x€ A and x € B}. The complement of A in B, denoted by B~ 4, is the
set of all points in B that are not in A; that is, B~ A = (x|x€ B, x ¢ A}. If, in a particular
discussion, all of the sets are subsets of a reference set X, we often refer to X ~ A simply as
the complement of 4.

The set that has no members is called the empty-set and denoted by @. A set that is not
equal to the empty-set is called nonempty. We refer to a set that has a single member as a
singleton set. Given a set X, the set of all subsets of X is denoted by P(X) or 2%; it is called
the power set of X.

In order to avoid the confusion that might arise when considering sets of sets, we
often use the words “collection” and “family” as synonyms for the word “set.” Let F be
a collection of sets. We define the union of F, denoted by Ur  F, to be the set of points

UThe Oxford English Dictionary devotes several hundred pages to the definition of the word “set.”
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that belong to at least one of the sets in F. We define the intersection of F, denoted by
Mrex F, to be the set of points that belong to every set in F. The collection of sets F is said
to be disjoint provided the intersection of any two sets in F is empty. For a family F of sets,
the following identities are established by checking set inclusions.

De Morgan’s identities

UF

FeF

X~ =()[X~F] and X~

FeF

N Fl=U[x~F],

FeF J FeF

that is, the complement of the union is the intersection of the complements, and the
complement of the intersection is the union of the complements.

For a set A, suppose that for each A €A, there is defined a set E). Let F be the
collection of sets {E) | A€ A}. We write F = {E;} ¢4 and refer to this as an indexing (or
parametrization) of F by the index set (or parameter set) A.

Mappings between sets

Given two sets A and B, by a mapping or function from A into B we mean a correspondence
that assigns to each member of A a member of B. In the case B is the set of real numbers
we always use the word “function.” Frequently we denote such a mapping by f: A— B,
and for each member x of A, we denote by f(x) the member of B to which x is assigned.
For a subset A" of A, we define f(A') = (b|b= f(a) for some member a of A'}: f(A') is
called the image of A’ under f. We call the set A the domain of the function f and f(A)
the image or range of f.If f( A) = B, the function f is said to be ento. If for each member b
of f(A) there is exactly one member a of A for which b= f(a), the function f is said to be
one-to-one. A mapping f: A— B that is both one-to-one and onto is said to be invertible;
we say that this mapping establishes a one-to-one correspondence between the sets A and B.
Given an invertible mapping f: A — B, for each point b in B, there is exactly one member a
of A for which f(a)=b and it is denoted by f~!(b). This assignment defines the mapping
f~1: B— A, which is called the inverse of f. Two sets A and B are said to be equipotent
provided there is an invertible mapping from A onto B. Two sets which are equipotent are,
from the set-theoretic point of view, indistinguishabie.

Given two mappings f: A— Band g: C —» Dfor which f(A) C C then the composition
go f: A— Disdefined by [go f](x) = g( f(x)) for each x € A. It is not difficult to see that
the composition of invertible mappings is invertible. For a set D, define the identity mapping
idp: D— D is defined by idp(x) = x for all x e D. A mapping f: A— B is invertible if and
only if there is a mapping g: B— A for which

gof=idsand fog=idp.

Even if the mapping f: A— B is not invertible, for a set E, we define f~1(E) to be
the set {a€ A| f(a) € E}; it is called the inverse image of £ under f. We have the following
useful properties: for any two sets £ and E»,

FUEIUE) = FUENUFE), fUENE)=fE)Nf(E)

and
FHE~E) = FFUE)~FY(E).
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Finally, for a mapping f: A— B and a subset A’ of its domain A, the restriction of f to A/,
denoted by f| 4, is the mapping from A’ to B which assigns f(x) to each x € A".

EQUIVALENCE RELATIONS, THE AXIOM OF CHOICE, AND ZORN'S LEMMA

Given two nonempty sets A and B, the Cartesian product of A with B, denoted by A X B, is
defined to be the collection of all ordered pairs (a, b) where a € A and b € B and we consider
(a, b) = (d', b) if and only if a = &' and b = ¥'? For a nonempty set X, we call a subset R
of X X X arelation on X and write x Rx’ provided (x, x’) belongs to R. The relation R is said
to be reflexive provided x R x, for all x € X; the relation R is said to be symmetric provided
x Rx if x' Rx; the relation R is said to be tramsitive provided whenever x Rx’' and x’' Rx”,
then x Rx".

Definition A relation R on a set X is called an equivalence relation provided it is reflexive,
symmetric, and transitive.

Given an equivalence relation R on a set X, for each x€ X, the set R, = {x'|x' € X, x Rx'}is
called the equivalence class of x (with respect to R). The collection of equivalence classes is
denoted by X/R. For example, given a set X, the relation of equipotence is an equivalence
relation on the collection 2 of all subsets of X. The equivalence class of a set with respect
to the relation equipotence is called the cardinality of the set.

Let R be an equivalence relation on a set X. Since R is symmetric and transitive,
Ry = Ry if and only if x Rx" and therefore the collection of equivalence classes is disjoint.
Since the relation R is reflexive, X is the union of the equivalence classes. Therefore X/R is
a disjoint collection of nonempty subsets of X whose union is X. Conversely, given a disjoint
collection F of nonempty subsets of X whose union is X, the relation of belonging to the
same set in F is an equivalence relation R on X for which 7 = X/R.

Given an equivalence relation on a set X, it is often necessary to choose a subset C
of X which consists of exactly one member from each equivalence class. Is it obvious that
there is such a set? Ernst Zermelo called attention to this question regarding the choice of
elements from collections of sets. Suppose, for instance, we define two real numbers to be
rationally equivalent provided their difference is a rational number. It is easy to check that
this is an equivalence relation on the set of real numbers. But it is not easy to identify a set
of real numbers that consists of exactly one member from each rational equivalence class.

Definition Let F be a nonempty family of nonempty sets. A cheice function f on F is a
function f from F to Up ¢ £ F with the property that for each set F in F, f(F) is a member
of F.

Zermelo’s Axiom of Cheice Let F be a nonempty collection of nonempty sets. Then there is
a choice function on F.

2In a formal treatment of set theory based on the Zermelo-Frankel Axioms, an ordered pair (a, b) is defined to
be the set {{a}, {a, b}} and a function with domain in A and image in B is defined to be a nonempty collection of
ordered pairs in A X B with the property that if the ordered pairs (a, &) and (a, 5") belong to the function, then
b="b.



6 Preliminaries on Sets, Mappings, and Relations

Very roughly speaking, a choice function on a family of nonempty sets “‘chooses” a member
from each set in the family. We have adopted an informal, descriptive approach to set theory
and accordingly we will freely employ, without further ado, the Axiom of Choice.

Definition A relation R on a set nonempty X is called a partial ordering provided it is
reflexive, transitive, and, for x, x' in X,

ifxRx and x' Rx, thenx=1%'.

A subset E of X is said to be totally ordered provided for x, x' in E, either x Rx' or ' Rx. A
member x of X is said to be an upper bound for a subset E of X provided x'Rx for all ¥’ € E,
and said to be maximal provided the only member X' of X for which x Rx'is x' = x.

For a family F of sets and A, Be F, define A R B provided A C B. This relation of
set inclusion is a partial ordering of . Observe that a set F in F is an upper bound for a
subfamily ' of F provided every set in F' is a subset of F and a set F in F is maximal
provided it is not a proper subset of any set in F. Similarly, given a family F of sets and
A, Be F define A R B provided B C A. This relation of set containment is a partial ordering
of F. Observe that a set F in F is an upper bound for a subfamily F' of F provided every
setin ' contains F and a set F in F is maximal provided it does not properly contain any
setin F.

Zorw's Lemma Let X be a partially ordered set for which every totally ordered subset has an
upper bound. Then X has a maximal member.

We will use Zorn’s Lemma to prove some of our most important results, including the
Hahn-Banach Theorem, the Tychonoff Product Theorem, and the Krein-Milman Theorem.
Zorn’s Lemma is equivalent to Zermelo’s Axiom of Choice. For a proof of this equivalence
and related equivalences, see Kelley [Kel75], pp. 31-36.

We have defined the Cartesian product of two sets. It is useful to define the Carte-
sian product of a general parametrized collection of sets. For a collecton of sets {ExJyca
parametrized by the set A, the Cartesian product of {Ej}r¢ A, which we denote by IT, c A E), 18
defined to be the set of functions f from A toU, ¢ 4 £ such that for each A € A, f(A) belongs
to E,. It is clear that the Axiom of Choice is equivalent to the assertion that the Cartesian
product of a nonempty family of nonempty sets is nonempty. Note that the Cartesian product
is defined for a parametrized family of sets and that two different parametrizations of the same
family will have different Cartesian products. This general definition of Cartesian product is
consistent with the definition given for two sets. Indeed, consider two nonempty sets A and B.
Define A = {A;, A;} where A;#A; and then define E), = Aand E,, = B. The mapping that as-
signs to the function f € I ¢ A Ej the ordered pair ( f{ A1), f {A2) )is an invertible mapping of
the Cartesian product IT ¢ 5 Ex onto the collection of ordered pairs AX B and therefore these
two sets are equipotent. For two sets E and A, define £, = E for all A € A. Then the Cartesian
product [Ty ¢ 4 E) is equal to the set of all mappings from A to E and is denoted by ED.



