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Preface

This book is devoted to the study of value distribution of functions which are mero-
morphic on the complex plane or in an angular domain with vertex at the origin. We
characterize such meromorphic functions in terms of distribution of some of their
value points. The study, together with certain related topics, is known as theory of
value distribution of meromorphic functions. The theory is too vast to be justified
within a single work. Therefore we selected and organized the content based on their
significant importance to our understanding and interests in this book. I gladly ac-
knowledge my indebtedness in particular to the books of M. Tsuji, A. A. Goldberg
and I. V. Ostrovskii, Yang L. and the papers of A. Eremenko.

An outline of the book is provided below. The introduction of the Nevanlinna
characteristic to the study of meromorphic functions is a new starting symbol of
the theory of value distribution. The Nevanlinna characteristic is powerful, and its
thought has been used to produce various characteristics such as the Nevanlinna
characteristic and Tsuji characteristic for an angular domain. And from geometric
point of view, namely the Ahlfors theory of covering surfaces, the Ahlfors-Shimizu
characteristic have also been introduced. These characteristics are real-valued func-
tions defined on the positive real axis. Therefore, in the first chapter, we collect the
basic results about positive real functions that are often used in the study of mero-
morphic function theory. Some of these results are distributed in other books, some
in published papers, and some have been newly established in order to serve our
specific objectives in the book.

In the present book, we discuss value distribution not only in the complex plane,
but also in an angular domain. Therefore, we introduce, in the second chapter, var-
ious characteristics of a meromorphic function: The Nevanlinna characteristic for
a disk, the Nevanlinna characteristic for an angle, the Tsuji characteristic and the
Ahlfors-Shimizu characteristic for an angle. Although they were distributed in an-
other books, we collected all of them, and more importantly, we carefully compared
them with one another to reveal their relations that enabled us to produce new re-
sults and applications. We establish the first and second fundamental theorems for
the various characteristics and the corresponding integrated counting functions, and
provide an estimate of the error term related to the Nevanlinna characteristic for an
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angle in terms of the Nevanlinna characteristic in a larger angle. We discuss in an
angle the growth order of a meromorphic function and exponent of convergence of
its a-points by means of the Ahlfors-Shimizu characteristic. We establish unique
theorems in an angular domain with the help of the Tsuji characteristic, which is a
new topic, because this has never been touched before while only the case of the
whole complex plane was discussed.

After providing a brief overview of the characteristics in Chapter 2, we carefully
investigate, in the third chapter, a new singular direction of a meromorphic function
called T direction, which is different from the Julia, Borel and Nevanlinna direc-
tions. A singular direction is characterized essentially with the help of a property
that in any angle containing it, the function assumes abundantly any value possibly
except at most two values. The word “abundantly” is expressed by “infinitely often”
for the Julia directions and by the growth order of the function for the Borel direc-
tions. The definition of 7' directions is to compare the integrated counting function
in an angle to the characteristic and so it does not depend on the growth order, which
is different from the Borel directions. So we can naturally consider T directions of
meromorphic functions with zero order or infinite order. The second fundamental
theorem of Nevanlinna is considered as the background of T directions. The follow-
ing inequality ( )

. NrC,f=a
B sup = 0 )

always holds for all but at most two values of a. For a T direction, we consider
the above inequality in any angle containing it instead of the whole complex plane.
First we discuss the existence of T directions including the case of small functions
in our consideration, next do relationship with the Borel directions, then common
T directions of the function and its derivatives including the Hayman T directions.
The singular directions of meromorphic solutions of linear differential equations
possess some special properties, which are carefully studied and finally, we survey
the results on the uniqueness and singular directions of an algebroid function.

The book includes discussion of argument distribution as well as modulo dis-
tribution and their relations. In the fourth chapter, we reveal relations between the
numbers of deficient values and T directions. The results established there are new
and unpublished elsewhere. The essential idea for discussion of this topic comes
from observation that if the function assumes two values a and b at few points and
is in close proximity to a complex number ¢ # a,b at enough points in a bounded
domain, then it is close to ¢ in the whole domain possibly outside a small set and
that if the function is analytic, in view of the two constant theorem for the harmonic
measure, we can use the modulo of the function on some part of the boundary of the
domain to control the function modulo inside the domain. In the final section, we
make a survey on this topic.

In the fifth chapter, we discuss the growth of the meromorphic functions that have
two radially distributed values and a Nevanlinna deficient value. We first consider
the growth of the meromorphic functions without any restriction imposed on their
order and then those with the finite lower order. We attain our purpose in terms of
the Nevanlinna characteristic for an angle, as Goldberg and Ostrovskii did, but our

>0



Preface iii

starting point is to establish an estimate of the Nevanlinna characteristic for a disk
centered at the origin in terms of By g(r, f) under an observation of the Nevanlinna
deficient value, and then By g(r, f) is estimated by two C, g(r,*) which may deal
with the derivatives with help of fundamental inequalities for the Nevanlinna char-
acteristic for an angle, and finally, C,, g(r, *) are replaced by the integrated counting
functions N(r,£2,*) in terms of the relations between them. Thus the Nevanlinna
characteristic for a disk can be estimated by two N(r, £2, ) and we reduce the study
of this subject to estimation of By g in terms of Cy, g. However, this comes from the
study of fundamental inequality for the Nevanlinna characteristic for an angle. As
we know, most of the fundamental inequalities for a disk can be validly and easily
transferred to the case of an angle and therefore, we give out a simple and elemen-
tary approach to the discussions of this subject. When the function is of the finite
lower order, we use the Baernstein spread relation to discuss the estimation of the
Nevanlinna characteristic for a disk in terms of By g(r, f) and hence we can attain
deeper results for this subject.

In the sixth chapter, we collect and develop results about singularities of the
inverse of a meromorphic function. A transcendental meromorphic function is
equipped with a parabolic simply connected Riemann surface. The boundary points
of the Riemann surface correspond to transcendental singularities of the inverse of
the function, that is, asymptotic values of the function, and vice versa. We discuss re-
lationships between the number of direct singularities and the growth (lower) order.
The isolated transcendental singularity is logarithmic, and hence we observe that an
asymptotic value over which the singularity is not logarithmic is a limit of other sin-
gular values. For a meromorphic function of finite order, such an asymptotic value is
a limit point of critical values , which is the Bergweiler-Eremenko’s result. We show
Eremenko’s construction of a transcendental meromorphic function with the finite
given order which has every value on the extended complex plane as its asymptotic
value, and next discuss the fixed points of bounded-type meromorphic functions,
that is, meromorphic functions whose singular value set are bounded, from which
we obverse that meromorphic functions possess special characters if their singular
values are suitably restricted.

The final chapter is mainly devoted to the Eremenko’s proof of the famous
F. Nevanlinna conjecture on meromorphic functions with maximum total sum of
Nevanlinna deficiencies. The conjecture was proved first by David Drasin, but his
proof is very complicated. A. Eremenko used the potential theory to give a simple
proof to the conjecture, from which we see the power of the potential theory in the
study of value distribution of meromorphic functions. The theory to study subhar-
monic functions is the potential theory. The defence of two subharmonic functions is
called 8-subharmonic. The logarithm of modulo of a meromorphic function is a 8-
subharmonic function. Therefore, some problems about value distribution of mero-
morphic functions can be transferred to those about subharmonic functions. And
the limit functions of a sequence of subharmonic functions produced by the sub-
harmonic function in question are easier to be characterized than the meromorphic
functions. The property or behavior of the limit functions can be used to describe the
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meromorphic functions. This is one of the approaches in which the potential theory
are used to discuss problems about meromorphic functions.

For the benefit of readers, and for our intent to introduce and develop the po-
tential theory in value distributions, we introduce and gather the basic knowledge
about the potential theory including the normality of subharmonic function family
in the sense of .%,c and the Nevanlinna theory of subharmonic functions which con-
sist of works of Anderson, Baernstein, Eremenko, Sodin, and others. The works of
these mathematicians are very special and very important, and in our opinion, rep-
resent one aspect of value distribution theory which is worth further investigating
and developing.

The first draft of this book was finished at the end of 2006, and main content of
the book, except the seventh chapter was lectured in the summer course for post-
graduated students held at Jiang Xi Normal University in the summer of 2007. I am
indebted to Professor Yi Caifeng for her organizing the summer school, to Professor
He Yuzhan for his comments and offering me some important materials, and to Pro-
fessor Ye Zhuang for his support of this book. I would like to send many thanks to
others including my students who pointed out some mistakes or some tough state-
ments in the original draft when they read. This book has been partially supported
by the National Natural Science Foundation of China.

Jianhua Zheng
Beijing,
December, 2009
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Chapter 1
Preliminaries of Real Functions

Jianhua Zheng
Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China
jzheng @math.tsinghua.edu.cn

Abstract: The various characteristics of meromorphic functions are main tool in
the study of value distribution of meromorphic functions this book will introduce.
They are real-valued functions defined on the positive real axis. In this chapter, we
discuss certain properties of such real functions for application in later chapters.
We begin with the order and the lower order of such functions which include the
proximate order and the type function. We discuss the existence of the Pdlya peak
sequence. Also, we identify a sequence of positive numbers with some of the Pélya
peak properties. We mainly introduce a result of Edrei and Fuchs for the regularity,
thereby, improving the lemma of Borel and quasi-invariance of inequalities of two
real functions under differentiation and integration. Finally, we exhibit the Green
formula and collect several integral inequalities.

Key words: Real functions, Proximate order, Pélya peak, Regularity, Quasi-
invariance

1.1 Functions of a Real Variable

In investigation of theory of meromorphic functions, we often meet the study of
some properties of functions of a real variable, because various characteristics of
meromorphic functions are such functions. Therefore, in this section, we collect the
main properties of such functions which will be frequently used in the sequel.

1.1.1 The Order and Lower Order of a Real Function

Let T (r) be a non-negative continuous function on [rg, o) for some ry > 0 and define
log” x = logmax{1,x}. For T (r), we define its lower order i and order A in turn as
follows:
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B L JdogtT(r)

and o
A = A(T) = limsup _T(r)

r—reo r

We concentrate mainly on the function T (r) which tends to infinity as r does. The
order of a positive increasing continuous function can be characterized in term of an
integral value.

Lemma 1.1.1.  Let T (r) be a continuous, non-decreasing and positive function on
[ro, ). Then for each p < A(T), we have

[0

tp+1
Conversely, if the above equation holds for certain p, then A(T) > p.

Proof. Suppose that the integral is finite, and then for all 7 > rg,

() TI(r)
=Pl (P
K>/r tp+ldt>(2r)p+1r_2 T(r)r

k)

oo

where K = [ t—Tp(—Jf}dt. This immediately deduces A(7) < p and the former half part
of the lemma follows.

If A(T) < p, then for each s with A(T) < s < p, we have T(r) < r* for all
sufficiently large r. Thus T'(r)r P~! < r—(P=5)=1 which yields the integral 73 T(t dr
is convergent.

This completes the proof of Lemma 1.1.1. a

A continuous function may be too complicated to grasp, and thus sometime it
is necessary to modify it by preserving, roughly speaking, only the values of r at
which T'(r) can be approximately written into . The precise statement is as under

Theorem 1.1.1. Let T(r) be a continuous and positive function for r > ry > 0 and
tend to infinity as r — oo with A = A(T) < co. Then, there exists a function A(r) with
the following properties:

(1) A(r) is a monotone and piecewise continuous differentiable function for r >
rowith im A(r) = A

r—oo
(2) lim A/ (r)rlogr =0;
r—oo
3) limsup 5 = 1;
(3) HMP ;m%
(4) for each positive number d,

U(dr) :dl

— A0
lim 55 . U@ =r~0, (1.1.1)
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We shall call the function A(r) the proximate order of T(r) and the function
U(r) the type function of T(r). It is obvious that the prox1mate order and the type
function of a real function are not unique. As A > 0, U(r) = e*(")1°¢" ig increasing
for all larger r. A simple calculation implies that a monotone increasing function
T (r) satisfying (1.1.1) must have y(T) = A(T) = A. The formula (1.1.1) is the key
point of Theorem 1.1.1 and it makes sense essentially for the limit being finite. This
explains the necessity for the condition that a function T'(r) in question is of finite
order. However, in the case of infinite order, we have the following

Theorem 1.1.2. Let T(r) be a continuous and positive function for r > rg > 0
and tend to infinity as r — e with A = A(T) = oo. Assume that ©(r) is a positive,
continuous and non-increasing function with || Mdt < oo,

Then, there exists a function A(r) with the followmg praoperties

( 1) A(r) is non-decreasing and continuous and tends to infinity as r — oo;

2) limsup ;%(—7 =1;

r—oo

(3) SetU(r) = r*") and

lim U(r+o(U(r)))

lim U0 =1. (1.12)

The proofs of Theorem 1.1.1 and Theorem 1.1.2 can be found in Chuang [2].
The following result will be used often in the next chapters.
Lemma 1.1.2. Let T(r) be a non-negative and non-decreasing function in 0 < r <

oo If
.. T(dr)
liminf =25

2c>1

for some d > 1, then

r T(t) 2clogd )
J e T(r)+O(1);
If
liminf TT(Z? > d®

forsome d > 1 and ® > 0, then

/"T(t)dt KT(r) o),
1

t(l)+1
where K is a positive constant.

Proof. Write s = 932“—1 and we can find a natural number N such that for r > ro = d¥,
we have T(d~1r) < s~!T(r). Then for each r > ro = dV, we have n > N such that
d" < r < d"!, and let us estimate the following integral
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/rz(i)dtzni/dm 0 g 4 T(’)

o ! t=na* t an
n—1
< Y 7(d**')logd + T(r)logd
k=N
n—1 T(dk+1)
iz T(@")

< T(d")logd ¥, s7*+T(r)logd
k=0

T(r).

= T(d")logd +T(r)logd

2clogd

This yields the first desired inequality.

Now, we come to the proof of the second part of Lemma 1.1.2. Under the given
assumption, for r > ro = d” and some & > 0 we have T(d™'r) < (d +&)~°T(»).
Thus, it follows that

T@),, att! M, . [TTO
/ t(l)+1 Z /d. tm+1 dn t(l)+1 ar
1 1 1 1
k+1 g
Z T(d™)— (dka) - d(k+1)m) +T(r)5 (;176 - ﬁ)

< Z)_T(dn) g (d+£)—w(n—k-l) (L _ #) + l T(r)

dko  glEeoe o dno
o1 T(@) (4E )("“’“’ 1L 170)
) (d+e)"“’ (_;;_) - ® d*®
<RI < koI
where Ko = 4°=1 df:)z_wda, + .
This completes the proof of Lemma 1.1.2. ]

1.1.2 The Polya Peak Sequence of a Real Function

In this subsection, we consider the Pélya peak for a T (r), which was first introduced
by Edrei [6].

Definition 1.1.1. A sequence of positive numbers {r,} is called a sequence of Pélya
peaks of order B for T(r) (outside a set E) provided that there exist four sequences
{r.}, {ri}, {E,,} and {€,} such that

(1) m@E, ry—ee, B —oo, L 00 6,0, 6 —0(n—o);
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(@) liminf S > B;
B
() T0) < (1+&) (&) T(rm), t € lrari;

(4) T()/tP~5 < KT(r,,)/rE_e”‘, 1 <t < 7} and for a positive constant K.

Actually, it is easy to see that (2) follows from (4). It is obvious that any subse-
quence of a Pélya peak sequence is still a sequence of the Pélya peak. Please note
that the above definition of the PSlya peaks has some differences from that in other
literatures where a sequence of Pélya peak is only required to satisfy (1) and (3)
listed in Definition 1.1.1. The sequence {r,} is called a sequence of relaxed Pélya
peaks of order B for a constant C > 1, provided that (1), (2) and (4) in Definition
1.1.1 hold and (3) does for C in place of “(1+ &,)”. It is easily seen that for a se-
quence {r,} of Pélya peak and d > 1, {dr,} must be a sequence of the relaxed Pélya
peak.

The following is a modifying version of well-known result which can be found
in Section 8.1 of Yang [12].

Theorem 1.1.3. Let T(r) be a non-negative and non-decreasing continuous func-
tion in 0 < r < oo with 0 < p(T) < o0 and 0 < A(T) < oo. Then for arbitrary finite
and positive number B satisfying i < B < A and a set F with finite logarithmic
measure, i.e., [pt~1dt < oo, there exists a sequence of the Pélya peaks of order B
Jor T(r) outside F.

Proof. 'We choose a sequence of positive numbers {g,} with g, — 0 as n — oo,
By induction, we seek the desired Pélya peak sequence {r, }. Suppose we have r,_;
and want to find r,.

First of all consider the case when 8 = A(T) < . 1t is easy to see that for »,

. T(t) . T()
msp e, = a0 e, =0

Therefore, we can find a real number u > max{ng, L Tn—1} such that
T(u)u_B+£" — 112?éu{T(t)t_ﬂ+€n}
and a v 2 u such that
T (v B8 = r}x?af{T(t)t‘ﬁ"""}.
We choose ry, with u < r,, < v such that
T (rp)r;P+én = Egv{T(t)t“ﬁ+s"} > T(u)u P+en,
Thus for t < v, we have

T (ra)ry e > T(1)sB+en (1.1.3)



6 1 Preliminaries of Real Functions

andfort > r,
T P ST B8 < T(ry)ry B o260 < T(ry)r P
and, therefore, for r, <1 < 1, /€,

T()tPHen = T ()P =828 T (r,)ry P=8np %

2€,
= T(r)rBten (ri) (1.1.4)

n

1\ 2n g
< = T(ry)r, Pren,

n

Combining (1.1.3) and (1.1.4) deduces that r, satisfies (4) for 7, = r,,/&,. This also
immediately yields

B
t
T(t) < e 2nlogén (7) T(r,) for €., <t <& 'r (1.1.5)
n

Now let us consider the case when p < 8 < A. Assume without any loss of
generalities that €, < A — B. Then

- T(@) T()
llﬁilp Bre and h}gglf e

=0.

Application of a theorem of Edrei [6] deduces the existence of r, with r, >
2B+en

max{r,,_l,e,,_ &} such that

7(r) < (j—n)me"r(rn)
Fz,

for1<et<r, . This immediately implies (1.1.5) and r, satisfies (4), because
<

E+En,2
+én )

¢ 2e,
(_) < eZe,.(loge,.l
Tn

and the quantity on the right side is bounded and tends to 1.

Thus, we have gotten a sequence {r,} satisfying (1.1.5) and (4) in Definition
1.1.1.

Putd, =14+1/nand V = U;_,[rs,dnrs]. V has the infinite logarithmic measure
and, therefore, there exist a subsequence of {[r,,ds7,]}, each member of which con-
tains at least a point outside F. Without any loss of generalities we can assume for
each na #, € [ry,dyrs| \ F. Then for &,7, <t < 7,/8, with &, = d,&,, we have

for 1 <t < g lm(<m
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T() < (i)ﬁ+ T(ra) < (dn)P+ (i)p+ T(h)

1\* (e \P_
<@l () (5) 160,
n

this implies that {7, } satisfies (3) in Definition 1.1.1. It is easy to show {#,} satisfies
other conditions of the Pdlya peak.
This completes the proof of Theorem 1.1.3. 0O

Chuang considered in [4] the type function and in [3] the Pélya peak sequence
of a continuous real function and revealed some relations between the type function
and the Pélya peak sequence by demonstrating their existence simultaneously start-
ing from a basic theorem, that is, Theorem 1 of [3] or Lemma 4.4 of [4]. In fact, we
easily obtain a sequence of the Pélya peak of order A (T') from the type function, for
an example, a careful calculation implies that a sequence of positive real numbers
{ra} with U(rn) = (1+0(1))T(r,) must be a Pélya peak sequence of T'(r) of order
A(T). Drasin and Shea [5] obtained a necessary and sufficient condition for exis-
tence of a sequence of P6lya peaks of order B which satisfies only (1) and (3) listed
in Definition 1.1.1. Set

[ T(AR)
A (T)—sup{r.lir:ilipArT(x) = }

and

: T (Ax)
we(T) = mf{’r hmmfAfT( ) 0} .

It is proved in [5] that u,(T) < p(T) < A(T) < A*(T) and if p, < oo, then a se-
quence of Pélya peaks of order B satisfying only (1) and (3) listed in Definition
1.1.1 exists if and only if g, < B < A* and B < . However, we do not know if this
condition is sufficient to the existence of our Pélya peak sequence. Usually, we call
A* and p, respectively the Pélya order and Pélya lower order of T(r).

Generally, there exists no Pélya peak sequence of T(r) whose lower order is
of infinite order. However, we have the following, which will be often used in the
sequel.

Lemma 1.1.3. Let T(r) be an increasing and non-negative continuous function
with the infinite order and F a set of positive real numbers having finite logarith-
mic measure. Then given a sequence {s,} of positive real numbers, there exists an
unbounded sequence {r,} of positive real numbers outside F such that

T@)  Tlrm)

< R 1<t .
tSn rr

Proof. Since T (r) is of infinite order, for a fixed s, we have
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T(t
limsup t‘E ) =00

t—reo
and it is easy to see that we can find a sequence {#,} such that #,, > 2"" and #,,,; >

el/snf, and
T0) _ T(w)

tsn ~ an k] 1 S t S Am-
m
Set
Fo= | [Pn €'/ 5m].
m=1
Then

= = OO0
F. t

a & /Cl/s"?mdt_ i 1
m=1Fm A — ]

so that F, \ F has the infinite logarithmic measure. We can find a r,, € F, \ F such
that for some m, 7, < 1y, < gl/sn ?, and choose a r/, in [#m,rs] such that

M—max{T(t) I F

5 prs .rmgtgrn}.
n

Thus for 1 < ¢ < ry,, we have

T(t) < T(r:z) < (r_n)sn T(rn) <eT(rn)
= r rfln = r;in :

n

The desired sequence {r,} has been attained. a

1.1.3 The Regularity of a Real Function

We first of all consider the density and the logarithmic density of a Lebesgue mea-
surable set on the positive real axis. However, we begin with a general case, which
will bring us some benefits.

An absolutely continuous function y(r) on an interval [a, 5] has finite derivative
almost everywhere in the sense of Lebesgue and y’(r) € L'([a,b]) and for each
r € |a,b] '

v = v@+ [ vou

and an indefinite integral of a function in L!([a, ]) is absolutely continuous. A con-
vex function is absolutely continuous and its right (left) derivative is non-decreasing.
We say that an increasing function y/(r) is a convex function of another increasing
¢(r) if the right (left) derivative dy(¢)/d¢(¢) exists and is non-decreasing.

We denote by m the Lebesgue measure on the positive real axis. Let E be a
Lebesgue measurable subset of the positive real axis and y(r) a positive and ab-



