ToRing ERBH T MH o
aaison
Wesley

The \Y | 7thlcal Man Month

Essays on Sofmare Engineering

I AN o)

' [£] Frederick P. Brooks, Jr. &

B BRREEEZEMHINBXHER
6 B RE TS EMHA R
8 REMWARAIRENES

Z AL AL
? POSTS & TELECOM PRESS

EHERSBE (CIP) HiE

AN B ##iE = The Mythical Man—Month: Essays on
Software Engineering : 3L / (3) MR
(Brooks,F.P.) ZE. — Jb@ : ARMBH MR, 2010.8

(RRBEFEIA

ISBN 978-7-115-23268-17

1. QA II. O M. OKBAFFR—FX IV.
TP311. 52

oh [AR A 8 T rECIP B 7 (2010) 31221175
HERE

AHHAFTHEE Brooks 7£ IBM A FIE System/360 FHEMRFILI R I
5 K BRI R 2 081360 1 B ZFRHY B A% . A A341, Brooks AA]
A H R T BERE NI, BAEREZARE A, XBEK
B TRNEER, M EAT HNEREAN T HCHEMYL.

FRUAELT B S T AN RIS T RS R AR, REE A5
BB SRR AN EXEENTR. ABER T AB— Bk FERRR
B, IR T B TR A T . ABE AR ATk
Mol AU, ST R AR B E 2, RIS R AR,

ARBFRTAS
AB#E ()
N [3] Frederick P. Brooks, Jr.
FILHE R

o AR SBEEET iR S B4
BE4n 100061 B TR 315@ptpress.com.cn
RIHE http://www.ptpress.com.cn
A6 3R E kBRI A BR 24 7 Bk

& FZ: 880X1230 1/32

Epgk: 10.5
EH: 268TF 20104E8 A% 1R
EN%: 1-2 500 20104E 8 AHLATE 1 K ENR

ZHERARIRILS BT 01-2006-5373%
ISBN 978-7-115-23268-7
EH: 29.007T
EERERE: (010)51095186¢ ENEREALZ: (010067129223
E#RRL . (010)67171154

hi % = BA

Original edition, entitled The Mythical Man-Month: Essays on Software
Engineering, 9780201835953 by Frederick P. Brooks, Jr., published by Pearson
Education, Inc., publishing as Addison-Wesley, Copyright ©1995 by Addison
Wesley Longman, Inc.

All rights reserved. No part of this book may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage retrieval system, without permission
from Pearson Education, Inc. '

China edition published by PEARSON EDUCATION ASIA LTD. and
POSTS & TELECOM PRESS Copyright © 2010.

This edition is manufactured in the People’s Republic of China, and is
authorized for sale only in the People’s Republic of China excluding Hong

Kong, Macao and Taiwan.

A B HL SRR B Pearson Education Asia Ltd. #3240 A B R B3 H At 2k
K. REBEEBEF, AT FREHRPBABHE.

R Tt ARIEFIESE N G, BTRITBIX N &S #X
BRob) B ETT.

AP HENEH Pearson Education (E4E#E HRER) BOLBThR
%, TAEENEHE.

JREURA, RS .

it

20

i
HYy
M

o0 2 iR

20 5 2 T, AN B APE) ARARZ B B, HiERINEALD,
RAPBERIEIT2S FEMT. HEAABERK, 1975 FEABHH
S TR, RLE R R R, MR O R B R T ek
T, RERCEMN A ESMEIG S RATXLHE, AR
HEERL T 1 BSORET .

Peter Gordon H 1980 £ AR —H i L& —R THE, WM
HBh35, BL{EAB TR Addison-Wesley fIHIR &1k A T o A3 LHAR
CANAMIEY LS. BITEEANNVIRBATEE), TRRM—
HMBEKRIE, BA EREFEARTED, FNEALEEIARE
1,

516 FET T 1986 4E KA IFIPS (EFRfE LB ESBA
) BRRMBI BARE: KU TENLRMER) (No Silver
Bullet: Essence and Accidents of Software Engineering), X8 LK
AR EF—TEGFERASERRENANNEEK. RIXNEE
FHHBATHRHATEF Robert L. Patrick KT AAHEKMEM, ik
EREHR TELOARBHKAME . 308 T 1987 FHEFT A
T IEEE (vHEAML) Ab bk, MifiS &5k,

(BHBH) 5IETHARE, EWMSEI0EARSHIME
MR AR B AR F R HRBER EMRE. 74 1 Sl
10T, BUBSERRLZET . NKRRRMILERE, L (A
AfEY, (AR BRMHSBRMI. B, 517 =if
WTRFEH—EGFR RN, FFHH TR 1986 F4&HFX MR .

vi 20 ELESREE

EEFRBRER (AAMEY MidEd, RRAEPEHEH
AR DB 3R A CRERE ARSI EH . IE LR F, XSREA
5. R INAR S EHX L HRBE K, MHERE
RRKIEE. RUERERSFIANE 187, HEXLH MK
BATLAAE SR, SIRKK LR BIORIEL . BfF. EH

FIOEENHBAXENEY. EFEEERMNE, XEHN
MABYIRBFER A — &SRB aR. BRERK—HAKREDTHE, W
AR S, Pt/ P AERIE, MiERME. B 1986
FLR, BRAREFRMGTHERE, MTeAMEXIHHHA. &
MR e T RESUEREE LN .

HERIX— RN, W& T LR AFRMA LR TR R
BARH B A TR 5 B 2 Z A, R B PR AW,
AREHKH. f11E: Barry Boehm. Ken Brooks. Dick Case.
James Coggins. Tom DeMarco. Jim McCarthy. David Parnas, Earl
Wheeler 1 Edward Yourdon, L4, Fay Ward H e T FiE
HIHERR 1

STTFARBKE 16 &, FERKE Gordon Bell. Bruce Buchanan.
Rick Hayes-Roth, TR EAEEGFIFBEREEFREMES 4T
FIFIH, EEAFH R David Pamas, 2AATHEMHNER TR
GXRICE; i E K Rebekah Bierly 58 5% 7 3 5 1 3 I HERK 1
YEo R “UbSRRIMRAR” P77 VAR 40 M K1 9 U & 32 £ T Nancy
Greenwood Brooks f¥)H &, MAE—RAXTRAPMREHZNLIL P
EH T XS

75 1975 IR BT S 1, B3 HARCH: 2 I (9 B05E 7 B 0 i 3
HREINMEEMAH. ARFHNREHANAPTR: WRITESR
Norman Stanton F12E AR 4 ¥ Herbert Boes. Boes $i{E T L7 {1 XUi%
BAEA MNP AR SE: “RWAMTOAE. FAREH MR
MRBAGE.” FEENE, RUBNES-FEH-EEHFEN

20 FISRESRATE vil

. CYUNTRRAERTMZHABERE . RFAXEERFE
T H R], A Bt b i 8 U PR R B
Soli Deo gloria—— B G HRE

Frederick P. Brooks, Jr.
LFFRAMNERRART
1995 %3 A

£ 1 MEIS

BERKATTHNREREEREZ NS EERMREHFL
ol — W XEHEEFRAREEN T ALEES, HEXAETFEHA
JTHEEBEHEAR A B b K % Bl 2 70 N R A8 38 0 U7 THTIE B
.

EAGMMARE R K, BEF TN SHHEKMS,
AFIPS (EE{E BB FEAHAR) SR T —Bihigd, &l
FRERER T —SPEMB L. HEEFEREMMERTERHI.
BRI T 4 X AN /NP IF 24 3L, e b R T B AN AR .

RAERBATR AT HY IS HRKEXREK, 8188305 H
BFHESIE S RFRKBLERMEFESD (1956~1963), REES
S5 TR ARG, W7 1964 4F, YR RIERS
0S/360 &N, BAMBEMALLLEEEERETERN
4k,

B 08360 FFRE-NMBERXNALT, BRIFFESRZH
ML F. XA, SIERALEE F M. Trapnell N, HIFEH
BEHMT . REAERTRBIT A HBRE RS HAZL, BRI
WS T EA B AR, U EAR, g T AT H iR E Lk
M AN HASNE RS, BECERNE 2 XN EARLF.
WAX—RECHRHELTHE, RAPHNE, FHEHTMEH.

R, ERTEARRRULE T EMED. 4 0S/360 KR 1R
WA SERCHE RN, B RPITEREAE S ES HES
AEIEHRET R, SHERTTIEYE 1964 F 1965 £

FIERTE ix

BB, MBS, TEHXAN =M RMERT, BRI
FRTEZHNNS, SFHBHETRROTE. FRMEENRE
BHEARE, BINERAREZEA BRI

TEET OS/360 WL 47, T2 1965 FHEH IBM R E|
MRF RTIAE R BRI, BRI 08360 AR, FHE
NOZR B g R A B, BRAEAEFFT—T
System/360 BE {1} & F OS/360 ¥ 7+ & b fr#B M 72 & AR M &
HUAL . Tom Watson % R AN Mg LLEE, ARHEREN
i B —ANB R B R

FEHRREES, BRE 1964 F 1965 FEHIMEBHBELER P
Case F1 1965 & 1968 £)& F. M. Trapnell A T HF IR KR, FFH
R REGLEHMEAGRTEEHESHTEN, AF
WK B T 2B F. J. Corbato. T /R B i SE 5 & Y John Harr £ V.
- Vyssotsky. EBriHEHLE M2 B)A Charles Portman. FRECRE % B
AR 433 o+ B S = 1K) ALP. Ershov L& IBM [A M. Pietrasanta,

BANERBCRTABRCED, PRSP R AR
Vg, NHEEHERFRNREEE.

BREREHI S, BHEEIT Mo, THEE 2%
BEETE, WEZ, BAE KB YRR E [K8 2 58 5 /N LI
AAR, FEEHTANRGFERME. BAERRE™ R S8
BT BEE MR XEENER. XILERSTTER BN
FRE, MR TR . eSS NIRRT T %t TRE R
oAt 51

XS ERHEA L, MR . RBRE WA HSHEIR,
B R e LA, OB EEB R AT R AT A EE. F
ZMACERETTFR, FEARBTKEHAHDNERL L
WAEREFREELT, BRI (Notes) 1425,

HFXR—ANERMARER T, FAENSE SRR
FEHERE, RIEREES —BRRHETEN.

X BI1RATE

B, % /0 #i % f Sara Elizabeth Moore /s 4, David Wagner %
4 1 Rebecca Burris K AZEAR B EAERIRIS TR OFE, B
Joseph C. Sloane F#%5t#E K IE L

Frederick P. Brooks, Jr.
LFFRANERRARE
1974 % 10 A

Contents

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18

W0 oM e W N =

Chapter 19

The Tar Pit ... 3
The Mythical Man-Monthoennn 13
The Surgical Teamooviiiiiimiiiiainn. 29
Aristocracy, Democracy, and System Design 41
The Second-System Effectoo. 53
Passing the Word 61
Why Did the Tower of Babel Fail? 73
Calling the Shot ..., 87
Ten Pounds in a Five-Pound Sack 97
The Documentary Hypothesis 107
Plan to Throw One Awayooonnnnn. 115
Sharp Toolsooiviviiiini e 127
The Whole and the Parts 141
Hatching a Catastrophecoiins 153
The Other Facecooiiiiiiniiniiiinnens 163
No Silver Bullet—Essence and Accident 177
“No Silver Bullet” Refired 205
Propositions of The Mythical Man-Month:

Trueor False?ccoiiiiiiiiiiiiiine 27
The Mythical Man-Month after 20 Years 251
Epilogue ... 291
Notes and Referencesooieeenn 293

1
TheTar Pit

I

1
The Tar Pit

Een schip op het strand is een baken in zee.
[A ship on the beach is a lighthouse fo the sea.]

DUTCH PROVERB

C. R. Knight, Mural of La Brea Tar Pits

The George C. Page Museum of La Brea Discoveries,
The Natural History Museum of Los Angeles County

4 The Tar Pit

No scene from prehistory is quite so vivid as that of the mortal
struggles of great beasts in the tar pits. In the mind’s eye one sees
dinosaurs, mammoths, and sabertoothed tigers struggling against
the grip of the tar. The fiercer the struggle, the more entangling the
tar, and no beast is so strong or so skillful but that he ultimately
sinks.

Large-system programming has over the past decade been
such a tar pit, and many great and powerful beasts have thrashed
violently in it. Most have emerged with running systems—few
have met goals, schedules, and budgets. Large and small, massive
or wiry, team after team has become entangled in the tar. No one
thing seems to cause the difficulty—any particular paw can be
pulled away. But the accumulation of simultaneous and interact-
ing factors brings slower and slower motion. Everyone seems to
have been surprised by the stickiness of the problem, and it is hard
to discern the nature of it. But we must try to understand it if we
are to solve it.

Therefore let us begin by identifying the craft of system pro-
gramming and the joys and woes inherent in it.

The Programming Systems Product

One occasionally reads newspaper accounts of how two program-
mers in a remodeled garage have built an important program that
surpasses the best efforts of large teams. And every programmer
is prepared to believe such tales, for he knows that he could build
any program much faster than the 1000 statements/year reported
for industrial teams.

Why then have not all industrial programming teams been
replaced by dedicated garage duos? One must look at what is being
produced.

In the upper left of Fig. 1.1 is a program. It is complete in itself,
ready to be run by the author on the system on which it was
developed. That is the thing commonly produced in garages, and

The Programming Systems Product 5

Fig. 1.1 Evolution of the programming systems product

that is the object the individual programmer uses in estimating
productivity.

There are two ways a program can be converted into a more
useful, but more costly, object. These two ways are represented by
the boundaries in the diagram.

Moving down across the horizontal boundary, a program
becomes a programming product. This is a program that can be run,

6 The Tar Pit

tested, repaired, and extended by anybody. It is usable in many
operating environments, for many sets of data. To become a gener-
ally usable programming product, a program must be written in a
generalized fashion. In particular the range and form of inputs
must be generalized as much as the basic algorithm will reasonably
allow. Then the program must be thoroughly tested, so that it can
be depended upon. This means that a substantial bank of test
cases, exploring the input range and probing its boundaries, must
be prepared, run, and recorded. Finally, promotion of a program
to a programming product requires its thorough documentation, so
that anyone may use it, fix it, and extend it. As a rule of thumb,
I estimate that a programming product costs at least three times as
much as a debugged program with the same function.

Moving across the vertical boundary, a program becomes a
component in a programming system. This is a collection of interact-
ing programs, coordinated in function and disciplined in format,
so that the assemblage constitutes an entire facility for large tasks.
To become a programming system component, a program must be
written so that every input and output conforms in syntax and
semantics with precisely defined interfaces. The program must
also be designed so that it uses only a prescribed budget of re-
sources—memory space, input-output devices, computer time. Fi-
nally, the program must be tested with other system components,
in all expected combinations. This testing must be extensive, for
the number of cases grows combinatorially. It is time-consuming,
for subtle bugs arise from unexpected interactions of debugged
components. A programming system component costs at least
three times as much as a stand-alone program of the same func-
tion. The cost may be greater if the system has many components.

In the lower right-hand corner of Fig. 1.1 stands the program-
ming systems product. This differs from the simple program in all of
the above ways. It costs nine times as much. But it is the truly
useful object, the intended product of most system programming
efforts.

