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Introduction

What schemes are

The theory of schemes is the foundation for algebraic geometry formu-
lated by Alexandre Grothendieck and his many coworkers. It is the basis
for a grand unification of number theory and algebraic geometry, dreamt
of by number theorists and geometers for over a century. It has strength-
ened classical algebraic geometry by allowing flexible geometric arguments
about infinitesimals and limits in a way that the classic theory could not
handle. In both these ways it has made possible astonishing solutions of
many concrete problems. On the number-theoretic side one may cite the
proof of the Weil conjectures, Grothendieck’s original goal (Deligne [1974])
and the proof of the Mordell Conjecture (Faltings [1984]). In classical alge-
braic geometry one has the development of the theory of moduli of curves,
including the resolution of the Brill-Noether—Petri problems, by Deligne,
Mumford, Griffiths, and their coworkers (see Harris and Morrison [1998]
for an account), leading to new insights even in such basic areas as the the-
ory of plane curves; the firm footing given to the classification of algebraic
surfaces in all characteristics (see Bombieri and Mumford [1976]); and the
development of higher-dimensional classification theory by Mori and his
coworkers (see Kollar [1987]).

No one can doubt the success and potency of the scheme-theoretic meth-
ods. Unfortunately, the average mathematician, and indeed many a be-
ginner in algebraic geometry, would consider our title, “The Geometry of
Schemes”, an oxymoron akin to “civil war”. The theory of schemes is widely
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regarded as a horribly abstract algebraic tool that hides the appeal of ge-
ometry to promote an overwhelming and often unnecessary generality.

By contrast, experts know that schemes make things simpler. The ideas
behind the theory — often not told to the beginner — are directly related
to those from the other great geometric theories, such as differential ge-
ometry, algebraic topology, and complex analysis. Understood from this
perspective, the basic definitions of scheme theory appear as natural and
necessary ways of dealing with a range of ordinary geometric phenomena,
and the constructions in the theory take on an intuitive geometric content
which makes them much easier to learn and work with.

It is the goal of this book to share this “secret” geometry of schemes.
Chapters I and II, with the beginning of Chapter III, form a rapid intro-
duction to basic definitions, with plenty of concrete instances worked out
to give readers experience and confidence with important families of ex-
amples. The reader who goes further in our book will be rewarded with
a variety of specific topics that show some of the power of the scheme-
theoretic approach in a geometric setting, such as blow-ups, flexes of plane
curves, dual curves, resultants, discriminants, universal hypersurfaces and
the Hilbert scheme.

What’s in this book?

Here is a more detailed look at the contents:

Chapter I lays out the basic definitions of schemes, sheaves, and mor-
phisms of schemes, explaining in each case why the definitions are made
the way they are. The chapter culminates with an explanation of fibered
products, a fundamental technical tool, and of the language of the “functor
of points” associated with a scheme, which in many cases enables one to
characterize a scheme by its geometric properties.

Chapter II explains, by example, what various kinds of schemes look like.
We focus on affine schemes because virtually all of the differences between
the theory of schemes and the theory of abstract varieties are encountered
in the affine case — the general theory is really just the direct product of the
theory of abstract varieties & la Serre and the theory of affine schemes. We
begin with the schemes that come from varieties over an algebraically closed
field (I1.1). Then we drop various hypotheses in turn and look successively
at cases where the ground field is not algebraically closed (II.2), the scheme
is not reduced (II.3), and where the scheme is “arithmetic” — not defined
over a field at all (IL.4).

In Chapter II we also introduce the notion of families of schemes. Familics
of varieties, parametrized by other varieties, are central and characteristic
aspects of algebraic geometry. Indeed, one of the great triumphs of scheme
theory —and a reason for much of its success —is that it incorporates this
aspect of algebraic geometry so effectively. The central concepts of limits,
and flatness make their first appearance in section II.3 and are discussed
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in detail, with a number of examples. We see in particular how to take
flat limits of families of subschemes, and how nonreduced schemes occur
naturally as limits in flat families.

In all geometric theories the compact objects play a central role. In many
theories (such as differential geometry) the compact objects can be embed-
ded in affine space, but this is not so in algebraic geometry. This is the
reason for the importance of projective schemes, which are proper— this is
the property corresponding to compactness. Projective schemes form the
most important family of nonaffine schemes, indeed the most important
family of schemes altogether, and we devote Chapter III to them. After
a discussion of properness we give the construction of Proj and describe
in some detail the examples corresponding to projective space over the in-
tegers and to double lines in three-dimensional projective space (in affine
space all double lines are equivalent, as we show in Chapter II, but this is
not so in projective space). We also discuss the important geometric con-
structions of tangent spaces and tangent cones, the universal hypersurface
and intersection multiplicities.

We devote the remainder of Chapter III to some invariants of projec-
tive schemes. We define free resolutions, graded Betti numbers and Hilbert
functions, and we study a number of examples to see what these invariants
yield in simple cases. We also return to flatness and describe its relation to
the Hilbert polynomial.

In Chapters IV and V we exhibit a number of classical constructions
whose geometry is enriched and clarified by the theory of schemes. We be-
gin Chapter IV with a discussion of one of the most classical of subjects in
algebraic geometry, the flexes of a plane curve. We then turn to blow-ups, a
tool that recurs throughout algebraic geometry, from resolutions of singu-
larities to the classification theory of varieties. We see (among other things)
that this very geometric construction makes sense and is useful for such ap-
parently non-geometric objects as arithmetic schemes. Next, we study the
Fano schemes of projective varieties— that is, the schemes parametrizing
the lines and other linear spaces contained in projective varieties — focusing
in particular on the Fano schemes of lines on quadric and cubic surfaces.
Finally, we introduce the reader to the forms of an algebraic variety —
that is, varieties that become isomorphic to a given variety when the field
is extended.

In Chapter V we treat various constructions that are defined locally. For
example, Fitting ideals give one way to define the image of a morphism of
schemes. This kind of image is behind Sylvester’s classical construction of
resultants and discriminants, and we work out this connection explicitly.
As an application we discuss the set of all tangent lines to a plane curve
(suitably interpreted for singular curves) called the dual curve. Finally, we
discuss the double point locus of a morphism.

In Chapter VI we return to the functor of points of a scheme, and give
some of its varied applications: to group schemes, to tangent spaces, and
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to describing moduli schemes. We also give a taste of the way in which
geometric definitions such as that of tangent space or of openness can be
extended from schemes to certain functors. This extension represents the
beginning of the program of enlarging the category of schemes to a more
flexible one, which is akin to the idea of adding distributions to the ordinary
theory of functions.

Since we believe in learning by doing we have included a large num-
ber of exercises, spread through the text. Their level of difficulty and the
background they assume vary considerably.

Didn’t you guys already write a book on schemes?

This book represents a major revision and extension of our book Schemes:
The Language of Modern Algebraic Geometry, published by Wadsworth in
1992. About two-thirds of the material in this volume is new. The intro-
ductory sections have been improved and extended, but the main difference
is the addition of the material in Chapters IV and V, and related material
elsewhere in the book. These additions are intended to show schemes at
work in a number of topics in classical geometry. Thus for example we define
blowups and study the blowup of the plane at various nonreduced points;
and we define duals of plane curves, and study how the dual degenerates
as the curve does.

What to do with this book

Our goal in writing this manuscript has been simply to communicate to the
reader our sense of what schemes are and why they have become the fun-
damental objects in algebraic geometry. This has governed both our choice
of material and the way we have chosen to present it. For the first, we have
chosen topics that illustrate the geometry of schemes, rather than develop-
ing more refined tools for working with schemes, such as cohomology and
differentials. For the second, we have placed more emphasis on instructive
examples and applications, rather than trying to develop a comprehensive
logical framework for the subject.

Accordingly, this book can be used in several different ways. It could be
the basis of a second semester course in algebraic geometry, following a
course on classical algebraic geometry. Alternatively, after reading the first
two chapters and the first half of Chapter III of this book, the reader may
wish to pass to a more technical treatment of the subject; we would recom-
mend Hartshorne (1977] to our students. Thirdly, one could use this book
selectively to complement a course on algebraic geometry from a book such
as Hartshorne’s. Many topics are treated independently, as illustrations, so
that they can easily be disengaged from the rest of the text.
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We expect that the reader of this book will already have some famil-
iarity with algebraic varieties. Good sources for this include Harris [1995],
Hartshorne [1977, Chapter 1], Mumford [1976], Reid [1988], or Shafare-
vich [1974, Part 1], although all these sources contain more than is strictly
necessary.

Beginners do not stay beginners forever, and those who want to apply
schemes to their own areas will want to go on to a more technically oriented
treatise fairly soon. For this we recommend to our students Hartshorne’s
book Algebraic Geometry [1977]. Chapters 2 and 3 of that book contain
many fundamental topics not treated here but essential to the modern
uses of the theory. Another classic source, from which we both learned a
great deal, is David Mumford’s The Red Book of Varieties and Schemes
[1988]. The pioneering work of Grothendieck [Grothendieck 1960; 1961a;
1961b; 1963; 1964; 1965; 1966; 1967] and Dieudonné remains an important
reference.

Who helped fiz it

We are grateful to many readers who pointed out errors in earlier versions
of this book. They include Leo Alonso, Joe Buhler, Herbert Clemens, Ves-
selin Gashorov, Andreas Gathmann, Tom Graber, Benedict Gross, Brendan
Hassett, Ana Jeremias, Alex Lee, Silvio Levy, Kurt Mederer, Mircea Mus-
tata, Arthur Ogus, Keith Pardue, Irena Peeva, Gregory Smith, Jason Starr,
and Ravi Vakil.

Silvio Levy helped us enormously with his patience and skill. He trans-
formed a crude document into the book you see before you, providing a
level of editing that could only come from a professional mathematician
devoted to publishing.

How we learned it

Our teacher for most of the matters presented here was David Mumford.
The expert will easily perceive his influence; and a few of his drawings, such
as that of the projective space over the integers, remain almost intact. It was
from a project originally with him that this book eventually emerged. We
are glad to express our gratitude and appreciation for what he taught us.

David Eisenbud
Joe Harris
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I

Basic Definitions

Just as topological or differentiable manifolds are made by gluing together
open balls from Euclidean space, schemes are made by gluing together open
sets of a simple kind, called affine schemes. There is one major difference:
in a manifold one point looks locally just like another, and open balls are
the only open sets necessary for the construction; they are all the same
and very simple. By contrast, schemes admit much more local variation;
the smallest open sets in a scheme are so large that a lot of interesting and
nontrivial geometry happens within each one. Indeed, in many schemes
no two points have isomorphic open neighborhoods (other than the whole
scheme). We will thus spend a large portion of our time describing affine
schemes.

We will lay out basic definitions in this chapter. We have provided a series
of easy exercises embodying and applying the definitions. The examples
given here are mostly of the simplest possible kind and are not necessarily
typical of interesting geometric examples. The next chapter will be devoted
to examples of a more representative sort, intended to indicate the ways in
which the notion of a scheme differs from that of a variety and to give a
sense of the unifying power of the scheme-theoretic point of view.

I.1 Affine Schemes

An affine scheme is an object made from a commutative ring. The rela-
tionship is modeled on and generalizes the relationship between an affine
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variety and its coordinate ring. In fact, one can be led to the definition of
scheme in the following way. The basic correspondence of classical algebraic
geometry is the bijection

- finitely generated, nilpotent-free rings
{afline varicties} «— { over};m algebraically closed field Kg }
Here the left-hand side corresponds to the geometric objects we are
naively interested in studying: the zero loci of polynomials. If we start
by saying that these are the objects of interest, we arrive at the restricted
category of rings on the right. Scheme theory arises if we adopt the oppo-
site point of view: if we do not accept the restrictions “finitely generated,”
“nilpotent-free” or “K-algebra” and insist that the right-hand side include
all commutative rings, what sort of geometric object should we put on the
left? The answer is “affine schemes”; and in this section we will show how
to extend the preceding correspondence to a diagram

finitely generated, nilpotent-free rings
over an algebraically closed field K

l !

{affine schemes} «— {commutative rings with identity}

{affine varieties} «— {

We shall see that in fact the ring and the corresponding affine scheme
are equivalent objects. The scheme is, however, a more natural setting for
many geometric arguments; speaking in terms of schemes will also allow us
to globalize our constructions in succeeding sections.

Looking ahead, the case of differentiable manifolds provides a paradigm
for our approach to the definition of schemes. A differentiable manifold M
was originally defined to be something obtained by gluing together open
balls — that is, a topological space with an atlas of coordinate charts. How-
ever, specifying the manifold structure on M is equivalent to specifying
which of the continuous functions on any open subset of M are differen-
tiable. The property of differentiability is defined locally, so the differen-
tiable functions form a subsheaf ¥>°(M) of the sheaf € (M) of continuous
functions on M (the definition of sheaves is given below). Thus we may
give an alternative definition of a differentiable manifold: it is a topological
space M together with a subsheaf ¥°>°(M) C ¥(M) such that the pair
(M, €>(M)) is locally isomorphic to an open subset of R™ with its sheaf
of differentiable functions. Sheaves of functions can also be used to define
many other kinds of geometric structure — for example, real analytic man-
ifolds, complex analytic manifolds, and Nash manifolds may all be defined
in this way. We will adopt an analogous approach in defining schemes: a
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scheme will be a topological space X with a sheaf &, locally isomorphic to
an affine scheme as defined below.

Let R be a commutative ring. The affine scheme defined from R will be
called Spec R, the spectrum of R. As indicated, it (like any scheme) consists
of a set of points, a topology on it called the Zariski topology, and a sheaf
Ospec R ON this topological space, called the sheaf of regular functions, or
structure sheaf of the scheme. Where there is a possibility of confusion we
will use the notation [Spec R| to refer to the underlying set or topological
space, without the sheaf; though if it is clear from context what we mean
(“an open subset of Spec R,” for example), we may omit the vertical bars.

We will give the definition of the affine scheme Spec R in three stages,
specifying first the underlying set, then the topological structure, and fi-
nally the sheaf.

1.1.1 Schemes as Sets

We define a point of Spec R to be a prime —that is, a prime ideal — of
R. To avoid confusion, we will sometimes write [p] for the point of Spec R
corresponding to the prime p of R. We will adopt the usual convention that
R itself is not a prime ideal. Of course, the zero ideal (0) is a prime if R is
a domain.

If R is the coordinate ring of an ordinary affine variety V over an alge-
braically closed field, Spec R will have points corresponding to the points of
the affine variety — the maximal ideals of R— and also a point correspond-
ing to each irreducible subvariety of V. The new points, corresponding to
subvarieties of positive dimension, are at first rather unsettling but turn
out to be quite convenient. They play the role of the “generic points” of
classical algebraic geometry.

Exercise I-1. Find Spec R when R is (a) Z; (b) Z/(3); (c) Z/(6);
(d) Z); (e) Cla]; (f) Clz]/(z?).

Each element f € R defines a “function”, which we also write as f, on the
space Spec R: if z = [p] € Spec R, we denote by x(z) or k(p) the quotient
field of the integral domain R/p, called the residue field of X at z, and we
define f(x) € k(x) to be the image of f via the canonical maps

R — R/p — k(z).

Exercise I-2. What is the value of the “function” 15 at the point (7) €
SpecZ? At the point (5)?

Exercise I-3. (a) Consider the ring of polynomials C[z], and let p(z) be
a polynomial. Show that if a € C is a number, then (z — a) is a prime
of C[z], and there is a natural identification of x((z — a)) with C such
tlzat the value of p(z) at the point (z — a) € SpecC[z] is the number
p(a).
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(b) More generally, if R is the coordinate ring of an affine variety V over an
algebraically closed field K and p is the maximal ideal corresponding
to a point z € V in the usual sense, then x(z) = K and f(z) is the
value of f at z in the usual sense.

In general, the “function” f has values in fields that vary from point
to point. Moreover, f is not necessarily determined by the values of this
“function”. For example, if K is a field, the ring R = K|z]/(x?) has only
one prime ideal, which is (z); and thus the element z € R, albeit nonzero,
induces a “function” whose value is 0 at every point of Spec R.

We define a regular function on Spec R to be simply an element of R.
So a regular function gives rise to a “function” on Spec R, but is not itself
determined by the values of this “function”.

I.1.2 Schemes as Topological Spaces

By using regular functions, we make Spec R into a topological space; the
topology is called the Zariski topology. The closed sets are defined as follows.
For each subset S C R, let

V(S) ={z €SpecR | f(z) =0 for all f € S} ={[p] € SpecR|p D S}.

The impulse behind this definition is to make each f € R behave as
much like a continuous function as possible. Of course the fields x(z) have
no topology, and since they vary with z the usual notion of continuity
makes no sense. But at least they all contain an element called zero, so
one can speak of the locus of points in Spec R on which f is zero; and if
f is to be like a continuous function, this locus should be closed. Since
intersections of closed sets must be closed, we are led immediately to the
definition above: V' (.S) is just the intersection of the loci where the elements
of S vanish.

For the family of sets V(S) to be the closed sets of a topology it is
necessary that it be closed under arbitrary intersections; from the descrip-
tion above it is clear that for any family of sets S, we have (), V(S,) =
V (U, Sa), as required. It is worth noting also that, if I is the ideal gener-
ated by S, then V(I) = V(S5).

An open set in the Zariski topology is simply the complement of one of
the sets V' (.S). The open sets corresponding to sets S with just one element
will play a special role, essentially because they are again spectra of rings;
for this reason they get a special name and notation. If f € R, we define
the distinguished (or basic) open subset of X = Spec R associated with f
to be

Xy = [Spec R[\ V(f).

The points of Xy — that is, the prime ideals of R that do not contain f —
are in one-to-one correspondence with the prime ideals of the localization



