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Preface

This is a free translation of a set of notes published originally in Portuguese in
1971. They were translated for a course in the College of Differential Geome-
try, ICTP, Trieste, 1989. In the English translation we omitted a chapter on
the Frobenius theorem and an appendix on the nonexistence of a complete
hyperbolic plane in euclidean 3-space (Hilbert’s theorem). For the present
edition, we introduced a chapter on line integrals.

In Chapter 1 we introduce the differential forms in R™. We only assume
an elementary knowledge of calculus, and the chapter can be used as a basis
for a course on differential forms for “users” of Mathematics.

In Chapter 2 we start integrating differential forms of degree one along
curves in R". This already allows some applications of the ideas of Chapter 1.
This material is not used in the rest of the book.

In Chapter 3 we present the basic notions of differentiable manifolds. It
is useful (but not essential) that the reader be familiar with the notion of a
regular surface in RS,

In Chapter 4 we introduce the notion of manifold with boundary and
prove Stokes theorem and Poincare’s lemma.

Starting from this basic material, we could follow any of the possi-
ble routes for applications: Topology, Differential Geometry, Mechanics, Lie
Groups, etc. We have chosen Differential Geometry. For simplicity, we re-
stricted ourselves to surfaces.

Thus in Chapter 5 we develop the method of moving frames of Elie Cartan
for surfaces. We first treat immersed surfaces and next the intrinsic geometry
of surfaces

Finally, in Chapter 6, we prove the Gauss-Bonnet theorem for compact
orientable surfaces. The proof we present here is essentially due to S.S.Chern.
We also prove a relation, due to M. Morse, between the Euler characteristic
of such a surface and the critical points of a certain class of differentiable
functions on the surface.

As most authors, I am indebted to so many sources that it is hardly
possible to acknowledge them all. Let me at least mention that the first four
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chapters were strongly influenced by the writings of my friend and colleague
- Elon Lima and the last two chapters bear the imprint of my teacher and
friend S.S. Chern.

For the present version I am indebted to my colleagues M. Dajczer, L.
Rodriguez and W. Santos for reading critically the manuscript and offering a
number of useful suggestions. Special thanks are due to Lucio Rodrfguez for
his care in the camera ready presentation of the final text.

Rio de Janeiro, February 1994. Manfredo Perdigao do Carmo
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1. Differential Forms in R™

The goal of this chapter is to define in R"™ “fields of alternate forms” that
will be used later to obtain geometric results.

In order to fix the ideas, we will work initially with the three-dimensional
space R>. .

Let p be a point of R3. The set of vectors g — p, ¢ € R? (that have origin
at p) will be called the tangent space of R® at p and will be denoted by Rf,
The vectors e; = (1,0,0), e2 = (0,1,0), ez = (0,0,1) of the canonical basis
of R3 will be identified with their translates (e, )ps (€2)p, (€3)p at the point p.

A vector field in R® is a map v that associates to each point p € R® a
vector v(p) € R: We can write v as

v(p) = a1(p)e1 + az(p)ez + a3(p)es,

thereby defining three functions a;:R® — R, i = 1,2,3, that characteérize
the vector field v. We say that v is differentiable if the functions a; are
differentiable.

To each tangent space R;’, we can associate its dual space (Rj’,)‘ which is
the set of linear maps ¢: R;’, — R. A basis for (R:)' is obtained by taking
(da:.')‘,, i=1,2,3, where z;: R® — R is the map which assigns to each point
its i!® -coordinate. The set '

{(dxi)p; i=1,2, 3} :
is in fact the dual basis of {(e;),} since

_O0x; [0, ifi#j
(dxi)P(eJ') = a—z] - {1’ ifl=].

Definition 1. A field of linear forms (or an ezterior form of degree 1) in
R® is a map w that associates to each p € R® an element w(p) € (R3)"; w
can be written as

w(p) = a1(p)(dz1)p + a2(p)(dz2), + a3(p)(dz3)p

or
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. ,
,"’ = Z a; dzis
i=1
where a; are real functions in R3. If the functions a; are differentiable, w is
called a differential form of degree 1.

Now let A?(R3)* be the set of maps @:RJ x RS — R that are bilinear
(i.e.,  is linear in each variable) and alternate (i.e., (v, v2) = —p(v2,v1)).
With the usual operations of functions, the set A’(Rp)‘ becomes a vector
space.

When ¢, and @3 belong to'(R;’,)‘, we can obtain an element ¢ A 2 €
A*(R3)* by setting
(1 A 02)(v1,v2) = det(yi(v;))

The element (dz;), A (dz;), € A2(R3)* will be denoted by (dz; A dz;),. It is
easy to see that the set {(dz; A dz;),, i < j} is a basis for A’(R;’,)‘ (this will
be proved in a more general setting in Proposition 1 below). Furthermore,

(dzi Adzj)p = —(dzj Adzi)p,  i#7,

and
(dz; Adz;)p = 0.

Definition 2. A field of bilinear alternating forms or an ezterior form of
degree 2 in R? is a correspondence w that associates to each p € R? an
element w(p) € A%(R3)*; w can be written in the form

w(p) = a12(p)(dz1 A dz2)p + a13(p)(dz1 A dZ3), + a23(p)(dz2 A dz3),

or
w=za.-,-dz.-/\dz,-, ,7=1,2,3,
i<j

where a;; are real functions in R3. When the functions a;; are differentiable,
w is a differential form of degree 2.

We will now generalize the notion of differential form to R". Let p € R",
R} the tangent space of R" at p and (R3)" its dual space. Let A*(R2)* be
the set of all k-linear alternating maps

e:REx...xR* >R
N, —
k times
(alternating means that ¢ changes signs with the interchange of two con-
secutive arguments). With the usual operations, A*(R3)* is a vector space.
Given ¢y,...,px € (R})", we can obtain an element ¢; A 2 A ... A pi of
A¥(R3D)* by setting
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(Wl A Y2 A...A ‘Pk)(vlvv27 [ »vk) = det(‘pi(vj))’ i:j = 1) s ’k-

It follows from the properties of determinants that 1 A2 A...A g is in fact
k-linear and alternate. In particular (dz;,)pA(dZi,)pA. . . A(dzy,) € AF(R3),
i1,82,...,8k = 1,...,n. We will denote this element by (dz;, A dz;; A... A
dxiu )P‘

Proposition 1. The set

{(dz,-, /\.../\d.’t.'k)p, 91 <ig<... < i, ij € {1,...,n}}
is a basis for AF(R})*.
Proof. The elements of the set are linearly independent. For, if

z Qi ...i, dZ.‘, A Adzi, =0,

i1<..<ig
is applied to
(€jrsseerein)y J1 <.ov <Jry Je€{1,...,n},
we obtain (Exercise 2)

Z Qi; ...ip d:c.-, A AN da:,-,‘ (e,-,,. . ,e_,-,,) =By g = 0.
<. <t

We now show that if f € A¥(R})*, then f is a linear combination of the
form

f= E 8, i dziy A...Adz;,.

11 <. <Lix
For that, set

g= E f(ein'-'sei;)dxi, A...Adzg,.

11 <...<ip
Notice that g € A*(R})* and that
g(ei;v o ,8;',,) = f(et'n“ . veig)a

for all 45,...,4x. It follows that f = g. Setting f(ei,,...,€i,) = @i,...ip, We
obtain the above expression for f. a

Definition 3. An exterior k-form in R" is a map w that associates to each
p € R" an element w(p) € A*(R})*; by Proposition 1, w can be written as

W)= Y i@ Ao AT )p i€ (L.},

1 <. <dx
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where a;, i, are real functions in R". When the a;, ;, are differentiable
functions, w is called a differential k-form.

For notational convenience, we will denote by I the k-upla (iy,...,ix),
i1 <...<ig,ij € {1,...,n}, and will use the following notation for w:

Ww= Za,d:c,..
I

We also set the convention that a differential 0-form is a differentiable func-
tion f:R"™ — R.

Ezample 1. In R* we have the following types of exterior forms (where a;, a; s
etc., are real functions in R*):
O-forms, functions in RY,
1-forms, ai1dz1 + a2dz2 + a3dzs + agdz,,
2-forms, aj12dz; A dza + a13dx1 A dZ3 + a14d2) A dZg + a23d22 A dz3 +
a24dx2 A dxq + a39dx3 A dxyg,
3-forms, aj23dry AdraAdzs+a124dri Adzy Adzg+6134dT1 AdZz AdTy +
a234dz2 A dza A dzy,
4-forms, ajz34dzy Adxe Adzy Adzy.
From now on, we will restrict ourselves to differential k-forms and we will
call them simply k-forms.
We are going to define some operations on k-forms in R".
First, if w and ¢ are two k-forms:

w= ; ardz;, = 2,: bydzy,

we can define their sum

wH+ = E(a, + b;)d:c;.
I ,

Next, if w is a k-form and ¢ is an s-form, we can define their ezterior product
w A o, which is an (s + k)-form, as follows.

Definition 4. Let
w=Za1dzz, I=(i1,...,ik), i1 <... <1,

w:Zdez‘J, J=(jl,...,j,), j1<...<j..

By definition, , :
WAp= ZazdexI Adzy.
1J
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Ezample 2. Let w = z1dT) + z2d%2 + z3dz3 be a 1-form in R and ¢ =
T1d7) A dz2 + dx) A dz3 be a 2-form in R3. Then, since dz; A dz; = 0 and
dz; Adz; = —dz; A dz;, i # j, we obtain

WA = 2adz2 Adzy Adxs + z3T1dx3 A dxy Adxs
= (Il.’ta - Zz)d:tl Adzy A dxs.

Remark 1. The definition of exterior product is made in such a way that if
#1,...,pk are 1-forms, then the exterior product ) A ... A p) agrees with
the k-form previously defined by

PLA . Apk(v,...,uk) = det(pi(y;)).

This follows immediately from the definition and will be left as an exercise
(Exercise 3).
The exterior product of forms in R™ has the following properties.

Proposition 2. Let w be a k-form, ¢ be an s-form and 9 be an r-form.
Then:

a) (WAP)AO=wA(pAb),
b) WAw)=(-1)F(pAw),
) wA(p+0)=wAp+wAl, ifr=s.

Proof. (a) and (c) are straightforward. To prove (b), we write

w=2md.1:;, I=(iy,...,4), i1 <...<iyg,

‘P=Zbldx.h J=(jl)--'sjc)s j1<"'<j8'
Then

wAw:Za,b;dw.-, A...Ad:c.-,/\dzj,/\...Adzj,
1J

=Y bsar(—1)dzi, A... Adzi,_, Adzj, Adz;, A... Adz;,
1J

=Y bsar(-1)*dz;, Adzi, A... Adz;, Adzy, A... Ad;,.
1J

Since J has s elements, we obtain, by repeating the above argument for
each dzjujl €J )

wWAp= Ebjat(-l)k'd:l'j, A...Adz;, Adz;, A... Adzx;,
JI ‘

= (-1)*pAw. -0
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Remark 2. Although dx; Adz; = 0, it is not ttﬁe that for any form wAw = 0.
For instance, if .
w = 71dT; A dx2 + T2dT3 A dzy,
then
wAw = 2z21Z2dxy Adx2 Adzs Adz,.

‘See however Exercise 4.

One of the most important features of differential forms is the way they
behave under differentiable maps. Let f:R™ — R™ be a differentiable map.
Then f induces a map f* that takes k-forms in R™ into k-forms in R" and is
defined as follows. Let w be a k-form in R™. By definition, f*w is the k-form
in R" given by

(frw)p)(vr, ..., v) = w(F @ dfp(v1), - . dfp(vi)).

Here p € R", 11,...,v € Ry, and dfp: R7 — RY(,, is the differential of the
map f at p. We set the convention that if g is a 0-form,

'@ =gof.

We are going to show that the operation f* on forms is equivalent to
“substitution of variables”. Before that, we need some properties of f*.

Proposition 3. Let f: R" — R™ be a differentiable map, w and ¢ be k-forms
on R™ and g:R™ — R be a 0-form on R™. Then:
) [*lwt+y)=f'wt o,
b) f*(gw) = f*(9)f* (W),
c) ;fzm,i--,w: are 1-forms in R™, f*(p1 A... Agr) = f*(p1) A... A
*(ox)-

Proof. The proofs are very simple. Let p € R™ and let vy,...,7% € R}.

Then :

(8) f*(w+@)p)v1s. .., 0) = (W + Q) (F(PINdfp(v1), .. . dfp(wi)) =
(Frw)®)(v1, .. v) + (£ R)P)(vrs .. o) = (fw+ o) (P) (v, - .., v).

(b) £*(gw)(P) (v, ..., v) = (qw)(f(P))(dfp(va),.. .. dfp(vk)) = (g f)(p)-
frwlp)(vr,..., ) = f*9(p) - frwP)(v1,..., ).

(c) By omitting the indication of the point p, we obtain
oA Ap)(v,.o) = (1 A Ape)(df (), .. df (0))

= det(p;(df (v;)) = det(f*¢i(v;))
= ("o A Afror) (v, ).

Remark 3. We will show below (See Proposition 4) that (c) holds not only
for 1-forms but for k-forms as well.
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We can now present the promised interpretation of f*. Let (z1,...,Zs) be
coordinates in R", (3,,...,%m) be coordinates in R™ and let f:R" — R™
be written as

=fl(:c;,...,x,.),...,ym=fm(z1,...,a:,.). (*)
Let w = Y, ardys be a k-form in R™. By using the above properties of f*,
we obtain

fro="fle)(fdyi) A... A(f dyi).
I
Since
£*(dyi)(v) = dyi(df (v)) = d(yi o f)(v) = dfs(v),

we have

flw = Ea!(fl(zh'" 1y Bn)se- s fm(T1se oy Ta))dfiy AL Adfy,
I

where f; and df; are functions of z;. Thus to apply f* to w is equivalent to
“substitute” in w the variables y; and their differentials by the functions of
z; and dz) obtained from (*).

Remark 4. In various situations, it is convenient to use differential forms
defined only on some open set U C R" and not on the entire R". It is clear
that everything done so far extends trivially to this situation.

Ezample. (Polar coordinates). Let w be the 1-form in R? — {0,0} by

. x
w= x2+y2d3+xz+y2dy'

Let U be the set in the plane (r,#) given by
U={r>0;0<0<2n}
and let f:U — R? be the map

f(r.8) = {z = rcosd

=rsenf

Let us compute f*w. Since
dz = cos 8dr — rsen 8d0,
dy = sen 8dr + r cos 6d8,

we obtain

frw=

(cos 0dr — rsen 8df) + 1 (sen 0dr + r cos 8d0)



