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CHAPTER 1

FUNCTIONS, LIMITS AND
CONTINUITY

Calculus is based on many mathematical concepts, -notations and theorems that were
developed and refined by : mathematicians during ‘hundreds of years of reseatch.
These basic concepts are described in this chapter. 'The most fundamental mathemat-
ical concept is the function that is used to describe, in a mathematical way, the rela-
tionship between ‘two or more changing quantities or variables. ' In this chapter we
study functions that determine the value of one variable (the dependent variable )
from the value of the other 'variable (the independent variable ) using a specific
rule or formula relating the variables. Such a function is called a function of one vari-
able, because there is only one independent variable.

In order to use functions in calculus, the concept of the limir of a function and
the associated concept of continuous function are essential. The limit of a function at
a specific value of the independent variable is simply a specific number that the func-
tion is trending towards. This seems, at first sight, to be an unlikely basis for the
development of mathematics of such fantastic importance as calculus, but in fact it
brings about the key developments of both types of calculus.

This chapter starts with a summary of mathematical notations and concepts that
provide the building blocks for: the development of calculus, including sets, num-
bers, inequalities, summations, absolute value, logical symbols, binomial coeffi-

cients and the binomial theorem.

1.1  Mathematical Sign Language

Mathematical formulations should be precise and concise. To achieve this aim ,

mathematical language employs precisely-defined symbols and formulas; and we will
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review them next.

1.1.1 Sets

A set is a collection of elements, or members, that are often numbers but ‘may be oth-
er mathematical or non-mathematical objects. Sets are denoted by letters such as S or
T, and can be defined simply by listing all elements, such as
S=11,%334 5§ 659748, 9, 10
Sets can also be defined by giving the characterizing properties of the elements. . For
example, the set S defined above can also be defined by an; of the following charac-
terizing properties :
S = { natural numbers from 1 to 10}
S={reNil lsx=<10l}
In the example above, Nis the symbol for the set of all non-negative integers 0, 1,
2, »++,called the natural number. The curly brackets indicate that it is a set, the
“x e NI” means that it is a set'of numbers % that are in. N, and the “1 <x<10”
means that x is further restricted to be between 1 and 10. ‘- Another example of a set
defined by a property is
T = {real numbers that are zeros of sin x|
={x | x=nmw for some integer n}
We write
xe S if x is an element of S (or shorter; “x is in §”)
x ¢S if x is not an element of S (or shorter; “« is not in S”)
For example, 0 e N means that zero is a member of the set of natural numbers ( or
shorter, '0 is a natural number) , rand ot ¢ N means that 7 =3. 141 592 653 5-++is
not a member of the set of natural numbers (or shorter, ar is not'a natural number).
If A, B are two sets, then they can be compared in various ways:
ACB or in words: “Ais a subset of B”,
means: every element from A is also an element of B.
A =Bror in words: “A equals B”,
means: A and B have precisely the same elements:
ACB or in words: “A is a proper subset of B” |
means: A is a subset of B, but A is'not equal to B. "
If A, B are sets, then new sets can be created in various ways:
AUB or in words: “A union B” ,

means: the set of all elements that are eitherin A or in B.
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ANB orin words: “A intersect B” ,

means: the set of all elements that are both in A ‘and in B.

A\ B or in words: “A minus B” s

means: the set of all elements that are in A but nét in B.

A X B or in words “the product set of A and B” (also called the direct product
and the Cartesian product) ,

means: - the set of all pairs (a, b) where a c A and b e B.
In particular, R is the symbol representing ‘the set of all real numbers and R*> =R x R
is the set of all real number pairs (x, y) € R *(also referred to as points of the real
plane with respect to a two-dimensional Cattesian coordinate system ).

It is useful in some circumstances to be able to refer to a special set that has no
members at all. Hence

@ denotes the empty set, the only set that contains no elements.
1.1.2  Numbers

In the following, the use of the three dots “---” means that the pattern established
by the adjacent numbers is followed for ever (an infinite number of times). Sets can
havea finite or infinite number of members but all 'of the number sets' described next
have an'infinite number of members.

N denotes the set of all natural numbers, {0, 1, 2,3, 4, ...}.

Z denotes the set of all integers: {---, -4, -3, =2, ~1,0, 1,2, 3,
4, ---}. Note théi"N CZ (the natural numbers is a proper subset of the integers) .

Q denotes the set of all rational numbers, () = {% pe’Z ,qeZand q#O}.

Note that Z C Q because an integer p is considered to be the same as the fraction -,

R denotes the set of all real numbers. Note that Q C R The definition of the
real number R is, very complicated and requires the use of limits, discussed later in
Section 1. 5.

C denotes the set of all complex numbers: C ={a +ib |a e Rand beR | 'where
1is a special number ( not in R ) satisfying i’ = =1, Néte that R C C because a
real number a is considered to be the same as the complex number a + i 0, where
“0” means the real number zero) . ‘

Even though the different number sets above are defined in totally different

ways., they all have operations of addition and multiplication that obey the same set of
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basic properties. If a, b, ¢ are any numbers in one of the above number sets, then
a very brief summary is as follow '( where the notation @b means multiplication .
axb).

(1) a+b and ab are both in the set ( ¢losed under addition and multiplica-
tion)) ; |

(2) a+b=b+a and ab =ba (Commutative Laws) ;

(3) (a+b) +e=a+(b#c)and(ab)e=a(be) (Associative Laws):;

(4) a+0=a (0 is the 'additive identity ) ; -

(B)oax0.=0;

(6) 1xa=a (1 isthe multiplicative identity ) ;

(7) a(b +¢) =ab +ac (Distributive Law) ;

(8) For any number a in any of these sets (except N ), there is another num-
ber written as — a. (the negative of @) such that a + (-a)=0;

(9) For any number b0 in any of these sets (except N and Z ), there is

another number written % (the reciprocal) such that b x % =1,

Subtraction is a special kind of addition in which “a minus b” is written as
a —b and defined by a —b =a + ( -b). Division is a special kind of multiplication
in which “a divided by b” is written as %and defined by Coda % (%) However,

the operations of subtraction and division do not obey the Commutative and Associa-

tive Laws.

The real numbers and its subsets, havé a unifying geometric property that any
straight line that is infinitely long in both directions can be made into a number line.
This means that we can create a one-to-one correspondence between the real numbers
and points of the number line. ‘A number line preserves our intuitive ideas of orde-
jlosdy va03 v S 2pdesily, L0y

1, 2,3, 4, - are at equally spaced points on the number line, and “a@ <b” is

ring and size of numbers. In particular the integers -

exactly equivalent to “a is to the left of b on the number line” ( see below for more
details about inequalities ). Number lines are used as axes in Cartesian coordinate

system, and in other important applications.
1.1.3  Intervals

Intervals are special and important subsets of real numbers. They often appear as
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solution sets to inequalities and areimportant in the definition of many functions.
Intervals come in various forms, summarized below. In the following it is assumed
that @ and b are real numbers satisfying a < b, except in the definition of the closed
interval [a, b] where we allow the possibility that @ = 5. The symbol o, used
below, is mot a real number, but is a notational convenience to indicate that the
interval is unbounded to the right and = o is used to indicate that the interval is
unbounded to the left.

The open interval (a, b) is the set of real numbers {xeR |a<x<b}.

The closed interval [a, b] is the set of real numbers {xeR |asx<b}.

The half-open interval (a, b] is the set of real numbers {zeR |a<xsb}.

The half-open interval [a, b) is the set of real numbers {xe R |a<w»<b]
The above . intervals are interyals with finite lengths b — a. The following intervals
have infinite length. ‘

The infinite interval [ a, o ) is the set of real numbers {xeR | a<x].

The (open) infinite interval (a, o ) is the set of real numbers |{x e R a<x}.

The infinite interval ( — o , b] is the set of real number {xeR |x<b].

The infinite interval ( — o , o ) is the same as the set R of all real numbers.

i

(1) The closed interval [ a; a] is just the single value a.

(2) The symbol (a, b), where a and b are real numbers, has many uses in
mathematics and in particular it is also used to denote.a point in the plane defined by
a two-dimensional Cartesian coordinate system. Thus sometimes it is necessary to
make this clear using words like “the interval (a, b)” or “the pointis (a, b)".

(3) “{a, b} is notation for the sét with members @ and b, and not for an

interval or a point.

1.1.4  Implication and Equivalence

If S and T are two related mathematical or non-mathematical statements that can be
true or false, then more complicated statements involving S and 7 also may be true or
false. We write;

S=T or in words: “S implies T} or “T only if S”,

means: if S is true, then T is also true. Many mathematical theorems have this
structure.

"T="S or in words: “not T implies not S” ,

means : if T is not true; ‘then S is'not true.  This statementis called the contra-
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positive of the first statement S= T, and the two statements, S= T and ~T'="1S,
mean exactly the same thing: | if either one is true, then so isithe other, and if either
one-is false, then so is the other.

ST orin words: “S is equivalent to T”, or “S if and only if T” , or, “Siff
T )i

means:  S=T and T=S, or-equivalently S and T aré both true, or S and 7T are
both false.

The notation Se>T is often written in theorems in the form' “S if and only if 77,
which is equivalent to the ‘two statements “S if 7" and “S only if 7”. 'The state-
ment “S if 7”7 should be read as “S'is true if T is true” and is exactly the same as:
T'=S. The statement “S only if o ohoti e réad'as “S is true only if 7 is true”

and is exactly the same as. S=7.

1.1.5  Inequalities and Numbers

Inequalities describe relations between the sizes of real numbers. Inequalities cannot
be applied to complex numbers.
A real number x is positive, written as x > 0, iff (if and only if) it is the
square of another non-zero real number. 'In symbols:
% >0&there is a ¥ € R such that 5 %0 and « =y

In our usual notation for real numbers, the positive numbers are those that ean be
writ ten without a negative sign (1, > V3, m, 3.142 , etc. ), whereas negative

numbers, (all numbers that are not positive or zero) can only be written with a nega-
1
—=p

any real number b, the negative of a negative number is a positive number.

tive sign in front( -1, -3, -m, -3.142, etc.). Since = ((=b) =b for

We say that real numbers a, be R satisfy the following relationships;l

a <b or in words: “a is less than b” (or alternatively: “b is larger than a” ) ,

means: b-a >0 (b-a is a positive number).

a<b or in words: “a is less than or equal to b” (or alternatively: “a is not
larger than b” , or: “b is greater than or equal to a” ) ,

means: either a <b or a = b.

The 'two inequalities: @ < b and b > a have identical meaning. Similarly the two
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inequalities: a<b and b=a have identical meaning.

Some important properties of inequalities, for any real numbers a, b, c.

(1) (a<band b<c)=a <ef Transitivity ) ;

(2) (a<b and c arbitrary) = (a +c<b +c);

(3) (a<band c>0)=sac < bc;

(4) (a<band c <0)=>ac > bc( notice that the direction of the inequality chan-
ges when an inequality is multiplied by a negative number) ;

(5) a<be - b < - a(this follows from point (4) above when both sides of
a <b are multiplied by - 1) ;

(6) 0<a<b=:»0<—11)~<L (this follows from point (3) above) ;
a ‘

(7) aeR =d’=0. ‘

Similar results hold for the “<” or “=" signs. Some examples are;
(8) (asband b<c) =a<c;

(9) (asband b<c¢) =asxc;

(10) (a<b and c arbitrary) = (a +c<b +c);

(11) (asb and ¢ >0)=ac<bc;

(12) (a<b and ¢=0)=vac<bc;

(13) (a<b and ¢ <0)=pac=bc;

(14) a<be -b< -—a;

(15) 0<h wcdi gl
b a

(16) If a=b=0 then v/a =band - Jas< -\/b (taking the negative square
root reverses the direction of the inequality) .
‘Note

All of the above can be written with the alternative notation for the inequality

”

using “ >” instead of “ <, such as:
(1) (e>b and b >a)=>c > a( Transitivity) ;
(2) (b>a and c arbitrary) = (b +c>a +¢);
(3) -(b>a and ¢ >0)=3be > ac,

and so on. -

1.1.6 Absolute Value of a Number

The absolute value of a real number a, |al|, is defined as:
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a, if a=0
la| = .
=a, ifa<0
That is, |a| is the same as a if a is positive or zero, and |a/| changes a to the posi-
tive number - a if a is negative. For any real numbers x, y, some properties of
absolute value are:

(1) |x|=0, and|x| =0 only if x=0;

(2) |xy|=lx[ly], and

i’ =|i|, provided that ¥ #0;
o yl

(3) | -x|=|x|and so|x-y| = |y -=];
(4) |x|* =«";

(5) /2 = |x| (This is very important. Some commercial software package

have this wrong) , that is, if x represents a negative number then /97: —-x;
(6) If a>0 then|x| <a is equivalent to —a <x < a orxe( —a, a);
(7) If a>0 then|x| <a is equivalent to —a<x<a orxe -a, al;

(8) Ifa>0then|x—-b|<aisequivalenttob—a<x<b+aorxisintheopen
interval (b-a, b+a);

(9) Ifa>0 then|x -b|<a is equivalent to'b —a<x<b +a or x e [b-a,
b+al;

(10) |x|<l1=|x|=|x|"if n is any positive integer;

(11) 1< |x|=|x|<|x|"if n is any positive integer;

(12) |a -b]is the distance between a and b on the number line;

(13) |x+y[<|x]+[yl];

(14) | = lyll<|x~y|.

x, if x=0,
Once again /2" = |x|. Thatis, /%’ ={ " o The reason for this is
—x, if % <0.

that the square root functiony/z is always defined to be the positive square root of the
number z.

A neighborhood of x = a means an open intérval (b, ¢) containing a, so that
b<a<c. A 5-neighborhood (§>0) of x =a, denoted by U(a, &), is the open
interval (a -8, a +8), or equivalently, all x satisfying |x —a| <&. That is,

U(a, 8) = {x| |x-a| <8}
Since | x — a |stands for the distance between x and a , soU(a, &) represents all the

x whose distance from a is less than 8, and consequently a is called the center of the



