2 i [AR 3 B

* MORE
RELIABLE
SOFTWARE

* FASTER
DEVELOPMENT

oare
Reliability
Engineering

(%) John D. Musa #

MM T R i | Baw Education

China Machine Press il |

ok

HoEHEIRE

i

ZR3ZhR)

(

John D. Musa: Software Reliability Engineering (ISBN: 0-07-913271-5).

Copyright © 1999 by the McGraw-Hill Companies, Inc. it

Original language published by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any means, or
stored in a database or retrieval system, without the prior written permission of the
publisher.

Authorized English language reprint edition jointly published by McGraw-Hill
Education (Asia) Co. and China Machine Press. This edition is authorized for sale in the
People’s Republic of China only, excluding Hong Kong, Macao SARs and Taiwan.
Unauthorized export of this edition is a violation of the Copyright Act. Violation of this

Law is subject to Civil and Criminal Penalties.

A BZ IR EPRR AR Tl A X BFEEF - F/REET HMEEM) L 5 &
TRt HERRAALBRAE 4 A RILHERA (FEEEE . RIS ITRKEAE)
. RO, WhEREENE, #RERZHR,

REHRCEBEBEFT, RMELUEMSRE R RABTARS .

A BHHEAMcGraw-HiIlA FIB thing, THEEERBHE.

MU A, BALLT

AHEMERS: EF: 01-2002-0857
EBERRAE (CIP) BiE

BATRAE TR (FOUR) 7 (%) B8 (Musa, 1.D.) F. - Jbat: Bl Ol
KR, 2003.6

(ZRFRHE)
BB : Software Reliability Engineering
ISBN 7-111-12321-2

I.%-- 0.2 0 %RHTREE-KETR-%3x V. TP31S
rh E AR A B CIPEIR B F (2003) 550438938

PLB Tk HARAE (iR A A EAR22S HESE 100037)

REwE: HEn
AR EFFEBENRI R - e BIE T EATHTRAT
2003476 A 55 1 iR 45 1 X E Y

787mm x 1092mm 1/16 - 26 Ep3k
En¥it: 0001- 3 000 A
Ef: 49.00 T

REAS, mAFER, BRI, 8E, bt gTHER

Introduction:
How to Use This Book

I designed this book with the goal of most efficiently teaching you what
software reliability engineering is and how to apply it in software
development and testing and software development. My object is to
concretely help you deal with the conflicting and very stressful pres-
sures that are probably impinging on you (If they aren’t, where do you
work and do they have any job openings?!). Software reliability engi-
neering is a skill that can make you more competitive, whether you
develop or use software-based systems or are a university student
learning to become a software developer or user. The book focuses on
practice, presenting methods that have been successfully used in many
applications, and avoiding ideas that have not yet been sufficiently
proved in actual use.

As you will see, I pay particular attention to testing, but with a very
broad perspective. For example, I expect that testers will participate on
the system engineering team and will directly interface with users of
the software-based product. Also, I envision that many other software
development personnel will be involved with testing and must there-
fore have a broad understanding of it.

I expect that the book will be of special value to you if you are a soft-
ware tester, software developer, system engineer, system architect,
quality assurance engineer, reliability engineer, or development man-
ager of a project that contains software; or, of course, a student prepar-
ing for one or more of these roles. It is intended to help you as a text in
learning the subject, a deskside companion as you start to apply soft-
ware reliability engineering, and a reference in handling special situa-
tions you may encounter. Thus you will see particular emphasis on

XIV Introduction: How to Use This Book

simplifying the material and organizing it for easy learning. The orga-
nization and presentation of the material evolved through seven years
of experience teaching this subject to several thousand practitioners in
many different organizations and a wide variety of software applica-
tions, and guiding them in learning it. I pay special attention to
describing the software reliability engineering process step by step.
The table of contents reinforces this hierarchy and makes it easy to find
the detail for any step. Finally, I devoted special effort to preparing an
index with multiple terms for recalling a topic.

The core sections (sections other than frequently asked questions,
special situations, and background) of Chaps. 1 to 6 include only the
material that you need to know for the common situations you will
encounter in practice. The software reliability engineering process
used in practice is described in Chap. 1. The chapter structure of the
book reflects the process, each of Chaps. 2 through 6 covering one of the
principal activities. I illustrate the process throughout by a unified
simple example, Fone Follower. This example is adapted from a real
project, but with proprietary data deleted and the material simplified
for learning.

Each chapter includes up to three supplementary sections: special
situations, frequently asked questions, and background. The special
situations sections present techniques that are usually needed only for
certain projects and systems. The frequently asked questions sections
provide some 350 of the better questions (and answers) that have been
posed to me in my experience teaching several thousand practitioners
and consulting for various organizations. They represent the back-
grounds, ways of learning, and perspectives of different people working
on different projects. You may find that some of them correspond with
yours. Thus they may help you better understand the topics. Professors
should find many of these useful to assign as exercises, in addition to
the problems provided at the end of many chapters. The background
sections contain supplementary information that can enrich your
understanding of the chapter but is not essentidl to exercising the prac-
tice. For example, it may present theory or explanation that justifies or
supports various activities of the practice. The order of the supplemen-
tary sections is a natural one; you progress from material that occurs
sometimes in practice to an elucidation of practice to material that
describes the rationale behind the practice but doesn’t have to be
understood to perform the practice.

Both the frequently asked questions and the background sections
may cover topics already treated in the core sections. However, they do
so from different perspectives or greater depth. I considered the possi-

Introduction: How to Use This Book XV

bility of integrating this material with the corresponding material in
the core sections but deliberately decided not to do so. Most practition-
ers told me that the core sections should be as simple and short as pos-
sible, so that they could learn the essential basics quickly, and that all
supplementary material should be separated from them.

Chapter 7 discusses how to deploy software reliability engineering in
your organization. The background material needed to enrich your
understanding of software reliability models is quite extensive, hence
it is covered in a separate chapter (Chap. 8).

Appendix A provides a step-by-step outline of the software reliability
engineering process; I recommend you keep it by your desk as a guide and
checkoff list the first time you use software reliability engineering. In my
classes for practitioners, we learn by doing through workshops. Each
workshop has teams of participants organized on project lines. After we
cover each chapter, each work group discusses the material related to
that chapter and tries to apply it to their project. If university students
are working on a sample software engineering project as part of their
total course work, the workshops can integrate very nicely with it. I have
provided the template that we use to guide the workshops in App. B. This
will help guide project teams that are deploying software reliability engi-
neering, particularly if they are using a self-study approach.

Appendix C contains a glossary of terms used in this book and App.
D a summary of the few formulas you may need. Appendix E lists the
software reliability engineering and testing functions that can be
helped with software tools.

Appendix F describes how to use CASRE, the Computer-Aided
Software Reliability Estimation tool (Nikora 1994). Although not the
only software reliability estimation tool, I chose it because of its conve-
nient graphical user interface and its wide availability through the CD
ROM included in the Handbook of Software Reliability Engineering
(Lyu 1996). CASRE consists of a graphical interface and the SMERFS
(Statistical Modeling and Estimation of Reliability Function for
Software) software reliability estimation program (Farr and Smith
1992). CASRE developers plan a new version with an improved user
interface. We can also expect a new version of SMERFS called
SMERFS Cubed (SMERFS 3), with a graphical interface of its own.
Both new programs will hopefully be distributed on the Internet (see
Software Reliability Engineering web site below).

Some chapters include problems designed to reinforce the material
presented; I have provided the answers to these problems in App. G.
Appendix H is a sampling of references to papers and articles that have
been published by users of software reliability engineering. These

XVI introduction: How to Use This Book

papers may be useful to you as models of applications, particularly
when the application is similar to yours.

University students, researchers, and others who wish to explore the
theory of software reliability engineering in depth will find Musa,
Iannnino, and Okumoto (1987) an excellent reference. The IEEE
Transactions on Software Engineering and the IEEE Transactions on
Reliability frequently publish papers in this area.

The IEEE Technical Committee on Software Reliability Engineering,
a branch of the Software Engineering Technical Council of the IEEE
Computer Society, is generally considered the leading professional orga-
nization in this field (web site http:/www.tcse.org). Among other activ-
ities, it publishes a newsletter and it sponsors the annual International
Symposium on Software Reliability Engineering. Other relevant pro-
fessional organizations include the IEEE Reliability Society, the
American Society for Quality Control and The European organization
ENCRESS (web site http:/www.csr.ncl.ac.uk/clubs/encress.html).
There is an electronic bulletin board on the Internet (subscribe at
vishwa@hac2arpa.hac.com,post to sw-rel@igatel.hac com).

I personally maintain a regularly updated Software Reliability
Engineering web site (http://members.aol.com/JohnDMusa/). It provides
information on a course I teach based on this book. In the course, you
apply software reliability engineering to your own job and receive guid-
ance and feedback. The site also includes a general overview, a section
for managers, a list of published articles by those who have applied this
practice, a Question of the Month (with answer), information on software
reliability estimation programs, links to other sites, and other resources.

Acknowledgments

I am grateful to the many colleagues who have read and commented on
part or all of this book, including James Cusick, Willa Ehrlich, Susie
Hill, Steve Meyer, Steve Peirce, and Ray Sandfoss of AT&T; Prof. Mary
Helanger, Linkoping University, Sweden; James Widmaier, National
Security Agency; Prof. Mladen Vouk, North Carolina State University;
and Prof. Carol Smidts, University of Maryland. I am indebted to
Adrian Dolinsky for -providing some of the questions in Chap. 7.
Particular thanks go to Kathy Yale for the enormous and demanding
work of word processing that has made the book a reality.

Feedback from managers and practitioners in my classes has been
invaluable; they include such organizations as ATT&T, Cisco Systems,
Computing Devices Canada, Eastman Kodak, Hewlett-Packard, Lucent
Technologies, Microsoft, Motorola, National Security Agency, Nokia,
Tandem Computers, Texas Instruments, and many more too numerous
to list.

Contents XVI|

Some material from Musa, J. D., A. Iannino, and K. Okumoto,
Software Reliability: Measurement, Prediction, Application, New York:
McGraw-Hill, 1987 has been incorporated, generally in modified and
updated form, with permission.

John D. Musa

ABOUT THE AUTHOR

John D. Musa is one of the creators of Software Reliability
Engineering and an international leader in distilling it into
a practice. He originated the concept of execution time, the
distinction between faults and failures, the operational
profile, and many other concepts. Currently an independent
consultant, he was Technical Manager of Software
Reliability Engineering at AT&T Bell Laboratories. He has
published some 100 papers and delivered more than 175
major presentations in the field. In 1992, he was recognized
by the International Software Testing and Analysis
Conference as the individual who had contributed the most
to software testing technology that year. He is a Fellow of
the IEEE and one of the founders of the IEEE Technical
Committee on SRE. ‘

Contents

Introduction: How to Use This Book XIII
Acknowledgments XVI

Chapter 1. Overview of Software Reliability Engineering 1
1.1 What Is Software Rellability Engineering and How Does It

Help Development and Testing? 2

1.2 The Software Reliability Engineering Process 5

1.3 Fone Follower] 7

1.4 Types of Test 8

1.5 Systems to Test 9

1.6 Frequently Asked Questions 11

1.6.1 Effectiveness and Benefits 11

1.6.2 Concepts 15

1.6.3 Relationships with Other Practices 18

1.6.4 Application 20

1.7 Background 24

1.7.1 Software Reliability Concepts 25

1.7.2 Reliability 28

1.7.3 Software Reliablility and Hardware Reliability 35

1.7.4 Software Reliabliity Modeling 36

1.8 Problems 39

Chapter 2. Defining Necessary Reliability 41

2.1 Concepts 41

2.1.1 Failure and Fauit 41

2.1.2 Fallure Severity Clagses 42

2.1.3 Fallure Intensity
2.2 Procedure
2.2.1 Defining Fallure with Severity Classes for Product
2.2.2 Choosing a Common Measure for All Assoclated Systems

2.2.3 Setting a System Fallure Intensity Objective for Each System
to be Tested

& &8&28

23

24

25

2.6

Contents

2.2.4 Determining the Developed Software Failure intensity
Objective for the Product and Its Variations

2.25 Engineering Strategies to Meet the Developed Software
Failure Intensity Objectives

Special Situations

2.3.1 Other Failure Groupings

2.3.2 Allocation of Failure Intensity Objective to Components
2.3.3 Software Safety and Ultrareliability
Frequently Asked Questions

2.4.1 Definition of Failure

2.4.2 Failure Severity Classes

2.4.3 Setting Failure Intensity Objectives

2.4.4 Concepts

2.4.5 Application

Background

2.5.1 Defining Failure with Severity Classes
2.5.2 Setting System Failure Intensity Objectives
2.5.3 Availability

2.5.4 Reliability Combinatorics

Problems

Chapter 3. Developing Operational Profiles

3.1

3.2

33

3.4

3.5

3.6

Concepts

Procedure

3.2.1 Determining Operational Modes

3.2.2 Identifying Operation Initiators

3.2.3 Choosing Tabular or Graphical Representation
3.2.4 Creating an Operations List

3.2.5 Determining Occurrence Rates

3.2.6 Determining Occurrence Probabilities

Special Situations

3.3.1 Handling the Evolution of the Definition of Operation
during System Development

3.3.2 Applying the Module Usage Table

Frequently Asked Questions

3.4.1 Uses

3.4.2 Concepts

3.4.3 Application

Background

3.5.1 Determining Operational Modes

3.5.2 Operations and Runs

Problems

Chapter 4. Preparing for Test

4.1
4.2

4.3
4.4

Concepts

Procedure

4.2.1 Preparing Test Cases
4.2.2 Preparing Test Procedures
Frequently Asked Questions
Background

51

53
56
56
57
59
62

64
65
69
73
77
77
87

92
94

97

97
101
102
103
104
105
112
115

116

117
118
119
120
122
124
129
129
130
133

135

136

140
140
146

150
156

4.4.1 Test Efficiency
4.4.2 Increasing Test Efficiency by Using Run Categories
4.4.3 A Graphical View of Test Selection

4.5 Problems

Chapter 5. Executing Test

5.1 Allocating Test Time
5.2 Invoking Test

5.3 lIdentifying System Failures
5.3.1 Analyzing Test Output for Deviations
5.3.2 Determining Which Deviations Are Failures
5.3.3 Establishing When Failures Occurred

5.4 Special Situations

Contents

5.4.1 Establishing When Fallures Occurred for Tests on Multiple

Configurations

5.4.2 Uncertainties in Establishing When Fallures Occurred

5.4.3 Multiple Versions in the Fieid
5.5 Frequently Asked Questions

5.5.1 Test Process

5.5.2 Counting Failures

5.5.3 Measuring When Failures Occurred
5.6 Background

5.6.1 Aliocating Test Time

5.6.2 Invoking Tests

5.6.3 Counting Failures
5.7 Problems

Chapter 6. Applying Failure Data to Guide Decisions

6.1 Certification Test
6.2 Reliability Growth Test
6.3 Special Situations
6.3.1 Evolving Programs
6.3.2 Unreported Failures
6.3.3 Certification Test at Different Risk Levels and
Discrimination Ratios
6.3.4 Operational Profile Variation
6.4 Frequently Asked Questions
6.4.1 Theory
6.4.2 Application
6.4.3 Special Situations
6.5 Problems

Chapter 7. Deploying Software Reliability Engineering

7.1 Persuasion
7.2 Executing the Deployment

7.3 Using a Consultant
7.3.1 Consultee
7.3.2 Consuitant

7.4 Frequently Asked Questions

Xi

156
157
159
161

163

163
164
168
168
169
17

174

174
175
178
178
179
182
186
192
192
192
193

196

197

198
201
205
205
208

213
217
221
221
227
238

239

241

24
243
247
247
248

249

Xl Contents

Chapter 8. Software Reliability Models

8.1

8.2
8.3

8.4

8.5

General Characteristics

8.1.1 Random Process

8.1.2 With and Without Fault Removal

8.1.3 Particularization

Classification

Comparison

8.3.1 Time Domains

8.3.2 Model Groups

Recommended Models

8.4.1 Description

8.4.2 Interpretation of Parameters of Logarithmic Poisson
Execution Time Model

8.4.3 Derivation of Models

8.4.4 Parameter Prediction

8.4.5 Parameter Estimation

Frequently Asked Questions

Appendix A. Software Reliability Engineering Process Step by Step

Appendix B. Template for Workshops

B.1
B.2
B.3
B.4
B.5
B.6

Defining System Workshop (Chap. 1)

Defining Necessary Rellability Workshop (Chap. 2)
Developing Operational Profiles Workshop (Chap. 3)
Preparing for Test Workshop (Chap.4)

Executing Test Workshop (Chap. 5}

Applying Failure Data to Guide Decisions Workshop (Chap. 6)

Appendix C. Glossary

Appendix D. Summary of Useful Formulas

Appendix E. Software Reliability Engineering and Testing
Functions Aided by Software Tools

Appendix F. Using CASRE

F.1
F.2
F3
F.4
F.5

Installation

Creating the Failure Data File for CASRE
Executing CASRE

interpreting CASRE Resulits

Problems

Appendix G. Problem Solutions

Appendix H. References to Users of Software Reliability Engineering

Bibliography 375
Index 381

259

261
263
265
265

266

267
269
279

290
292

311
315
320
334

338

341

343
344
345
346
346
346
347

355

357

359

360
361
362
365
366

367
371

Chapter

Overview of
Software Reliability Engineering

Be sure to read the Introduction to the book before starting this chap-
ter; it explains the organization of all the chapters.
Software development is plagued with one or more high risks:

1. .Unreliability of the released product
2. Missed schedules

3. Cost overruns

These situations can lead to loss of market share and/or loss of prof-
itability. Hence the pressure we developers and testers feel is often
overwhelming.

In response to this problem, much attention has been given to the
mechanics of development and testing, and many tools have been built
to support the process. Researchers have addressed the theory of soft-
ware development and testing and the many difficult questions it
entails. However, we have paid too little attention to the engineering of
reliability in software-based products. Engineering software reliability
means developing a product in such a way that the product reaches the
“market” at the right time, at an acceptable cost, and with satisfactory
reliability. You will note that market is in quotes; this is to convey a
broad meaning beyond the world of commercial products. Even prod-
ucts built for the military and for governments have a market in the
sense that product users have alternatives that they can and will
choose if a product is too late, too costly, or too unreliable.

The traditional view of development and testing does not provide us
with enough power to achieve this engineering goal. Software reliability

1

2 Chapter One

engineering takes a much broader, more proactive view. Software relia-
bility engineering, for example, has shown that the most efficient testing
involves activities that occur throughout the product life cycle and that
interface with system engineering and system design tasks. Software
reliability engineering therefore empowers testers to take leadership
positions in meeting user needs. It involves system engineers, system
architects, potential users, managers (Musa, 1996¢), and developers as
collaborators (Musa, 1996a, 1996b, 1997¢, 1997d, 1997g; Musa and
Widmaier, 1996).

The standard definition of reliability for software (Musa, Iannino,
and Okumoto, 1987) is the probability of execution without failure for
some specified interval of natural units or time. Thus we use a defini-
tion that is compatible with that used for hardware reliability,
although the mechanisms of failure may be different. The compatibili-
ty enables us to work with systems that are composed of both software
and hardware components.

The product characteristics described—reliability, development
time, and cost—are attributes of a more general characteristic—prod-
uct quality. Product quality is the right balance among these charac-
teristics. Getting a good balance means you must pick quantitative
objectives for the three characteristics and measure the characteristics
as development proceeds.

Projects, of course, have for some time been able to set objectives for
delivery date and cost of products and measure progress toward these
objectives. What has been lacking until recently has been the ability to
do the same thing for reliability for software-based systems. Since the
1940s, we have been able to set reliability objectives and measure reli-
ability for pure hardware systems. However, the proportion of such sys-
tems is now rapidly diminishing to near nonexistence, hence the need
for and the development of software reliability engineering.

1.1 What is Software Reliability Engineering
and How Does It Help Development
and Testing?

Software reliability engineering is the only standard, proven best prac-
tice that empowers testers and developers to simultaneously

1. Ensure that product reliability meets user needs

Speed the product to market faster

Reduce product cost

Improve customer satisfaction and reduce the risk of angry users

ANl

Increase their productivity

Overview of Software Reliability Engineering 3

You can use software reliability engineering for any release of any
software-based product, beginning at the start of any release cycle.
Hence you can easily handle legacy products. We use the term soft-
ware-based to emphasize that there are no pure software systems;
therefore, hardware must always be addressed in your analysis. Before
applying software reliability engineering to the testing of any product,
you must first test (or verify in some other manner) and then integrate
the units or modules into complete functions that you can execute.

Software reliability engineering works by applying two fundamental
ideas. First, it delivers the desired functionality for the product under
development much more efficiently by quantitatively characterizing
the expected use of the product and using this information to

1. Precisely focus resources on the most used and/or most critical func-
tions

2. Make testing realistically represent field conditions

Critical means having great extra value when successful or great extra
impact when failing. This value or impact can be with respect to human
life, cost, or system capability.

Second, software reliability engineering balances customer needs for
reliability, development time, and cost precisely and hence more effec-
tively. To do so, it sets quantitative reliability as well as schedule and
cost objectives. It engineers strategies to meet these objectives. Finally,
software reliability engineering tracks reliability in test and uses it as
a release criterion. With software reliability engineering you deliver
“just enough” reliability and avoid both the excessive costs and devel-
opment time involved in “playing it safe” and the risk of angry users
and product disaster resulting from an unreliable product.

Software reliability engineering is based on a solid body of theory
(Musa, Iannino, and Okumoto, 1987) that includes operational profiles,
random process software reliability models, statistical estimation, and
sequential sampling theory. Software personnel have practiced software
reliability engineering extensively over a period dating back to 1973
(Musa and Iannino, 1991b). At AT&T it has been a best current practice
(BCP) since May 1991 (Donnelly, Everett, Musa, and Wilson, 1996).
Selection as an AT&T BCP was significant because very high standards
were imposed. First, you had to use the proposed practice on several (typ-
ically at least 8 to 10) projects and achieve significant, documented ben-
efit to cost ratios, measured in financial terms. You then developed a
detailed description of the practice and how you used it on the projects,
along with a business case for adopting it. Committees of experienced
third- and fourth-level managers subjected the description and the case
to a probing lengthy review. Typically, the review lasted several months,

4 Chapter One

with detailed examinations being delegated to first-level software man-
agers and senior software developers. The review of the software relia-
bility engineering BCP proposal involved more than 70 such people.
Comments requiring action before final review of the proposal exceeded
100. Even then, the software reliability engineering BCP was only one of
five approved from the set of some 30 proposals made in 1991.

In addition, the American Institute of Aeronautics and Astronautics
approved software reliability engineering as a standard in 1993, result-
ing in significant impact in the aerospace industry (AIAA, 1992). A
major handbook publisher issued a Handbook of Software Reliability
Engineering in 1996, further evidence of the field’s importance (Lyu,
1996). The IEEE has also been active in developing standards for soft-
ware reliability engineering.

Organizations that have used software reliability engineering include
Alcatel, AT&T, Bellcore, CNES (France), ENEA (Italy), Ericsson
Telecom (Sweden), France Telecom, Hewlett-Packard, Hitachi (Japan)
IBM, NASA’s Jet Propulsion Laboratory, NASA’s Space Shuttle project,
Lockheed-Martin, Lucent Technologies, Microsoft, Mitre, Motorola,
Nortel, North Carolina State University, Raytheon, Saab Military
Aircraft (Sweden), Tandem Computers, the U.S. Air Force, and the U.S.
Marine Corps, to name just a few. There is a selection of papers and
articles by users of software reliability engineering, describing their
experience with it, in App. H.

Tierney (1997) reported the results of a survey taken in late 1997
that showed that Microsoft has applied software reliability engineering
in 50 percent of its software development groups, including projects
such as Windows NT and Word. The benefits they observed were
increased test coverage, improved estimates of amount of test required,
useful metrics that helped them establish ship criteria, and improved
specification reviews.

AT&T’s Operations Technology Center in the Network and
Computing Services Division has used software reliability engineering
as part of its standard software development process for several years.
This process is currently undergoing 1SO certification. The Operations
Technology Center was a primary software development organization
for the AT&T business unit that won the Malcolm Baldrige National
Quality Award in 1994. At that time, it had the highest percentage of
projects using software reliability engineering in AT&T. Another inter-
esting observation is that four of the first five software winners of the
former AT&T Bell Laboratories President’s Quality Award used soft-
ware reliability engineering.

The International Definity project represents one application of soft-
ware reliability engineering. They applied it along with some related
software technologies. In comparison with a previous software release

