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Note from the Translator

This book is translated from the Chinese monograph Association Schemes of Matrices
published by Science Press (Beijing, 2006).

This book is not intended as a comprehensive introduction to the theory of association
schemes. We refer the reader to [2, 3, 29] for a good treatment of such theory. Rather, the
main emphasis of this book is on the association schemes of various types of matrices.

I would like to say a few words about the tradition of association schemes of matrices
in China. The first such scheme was constructed on n x n Hermitian matrices and the
parameters were calculated for the lower dimensional ones by Z. Wan in 1965 [20]. Y.
Wang derived a recurrence for the parameters in the general case in late 1970s. This result
was published in his 1980 paper [23], which also included recurrences for the parameters
of association schemes of alternate and rectangular matrices. The methods used here are
based on the matrix method in the study of classical groups by L. K. Hua and Z. Wan
started in the late 1940s [8, 22, 21]. Subsequently, the same methods have been applied to
symmetric matrices in odd characteristic, even characteristic, and then to quadratic forms
by the authors and their collaborators. Some of these results were published in Chinese,
and hence are not widely available.

The matrix method here is elementary and requires little mathematical background. An
undergraduate student who has taken a course in linear and abstract algebra will be able to
take on a research project on matrix groups and their geometries with some of the matrix
techniques in this book. The matrix method has proven to be effective when the underlying
field has fewer elements or in lower dimensions.

There are other families of association schemes that are related to those of matri-
ces. These include the association schemes of dual polar spaces and g-analog Johnson
schemes, which are distance regular graphs. A recent development is the characterization
of distance-subgraphs of these graphs [11, 12, 27, 28]. The spectrum of the distance-2
subgraph of the bilinear forms graph was determined in [4].

In this edition, I have added some remarks to help English readers. Certain notations
are simplified. The authors have corrected all errors and mistakes found in the Chinese
edition.

We would like to thank Misha Klin for providing us the article [191.

Atlanta, May, 2009 Jianmin Ma



Preface

The concept of the association scheme together with partially balanced incomplete block
designs was defined in its own right by R. C. Bose and T. Shimamoto in 1952. It was
introduced to describe the balance relations among the treatments of partially balanced in-
complete block designs. Association schemes have close connections with coding theory,
graph theory, and finite group theory, and in particular, provide a framework for studying
codes and designs. By the 1980s, association scheme theory was an important branch of
algebraic combinatorics, and the research work on association scheme theory had grown
tremendously.

The study of association schemes in China was started by Professors L. C. Chang and
Pao-Lu Hsu in the late 1950s. Later, my students and I began to construct association
schemes and block designs using various subspaces of vector spaces under the action of
classical groups. These results were collected in the monograph Studies in Finite Geome-
tries and the Construction of Partially Incomplete Block Designs by Z. Wan, Z. Dai, X.
Feng, and B. Yang published by Science Press (Beijing, 1966). In the mid-1960s, I con-
structed a family of association schemes on Hermitian matrices and computed the param-
eters of the lower dimensional ones [20] and started a new direction of construction of
association schemes on matrices. The association scheme theory developed later indicates
that the association schemes of maximal totally isotropic subspaces and of Hermitian ma-
trices are known as primitive P- and Q-polynomial association schemes.

In the late 1970s, Professor Yangxian Wang continued the study of association schemes
of matrices. He derived formulas for the parameters of association schemes of Hermitian
matrices and constructed association schemes using rectangular matrices and alternate ma-
trices. Later, Professors Yuanji Huo, Xueli Zhu and I studied the association schemes of
symmetric matrices in odd characteristic. In the 1990s, Professor Yangxian Wang and his
students Jianmin Ma and Changli Ma at that time studied the association schemes of sym-
metric matrices and quadratic forms in even characteristic. Besides the parameters of these
association schemes, they discussed the subschemes, quotient schemes, and duality and
automorphisms. So the study of association schemes of matrices has reached a more com-
plete stage. In this monograph, Professors Yangxian Wang, Yuanji Huo, and Dr. Changli
Ma collect the results on association schemes of matrices in a systematic way. The aim
of this monograph is to study the association schemes of matrices, including construction,
parameter calculation, primitivity, duality, automorphisms and polynomial properties, etc.
I hope this monograph will provide readers with some methods and tools to study associ-
ation schemes and bring new results.

Beijing, April, 2009 Zhexian Wan



Foreword to the Chinese Edition

Following Professor Zhexian Wan’s suggestion, we have collected the results by us and our
collaborators on association schemes of matrices over a finite field. We have also added
some new material to make the presentation more complete.

This monograph consists of eight chapters. Chapter 1 introduces the basic theory of
association schemes taken from Bannai and Ito’s book [2]. The topics include Bose-
Menser algebra, Krein parameters, duality, primitivity, subschemes and quotient schemes,
the polynomial property, and automorphisms. Some topics have been worked out in greater
detail. Chapters 2 to 7 cover association schemes based on various types of matrices: rect-
angular, alternate, Hermitian, symmetric, and quadratic forms. We cover their construc-
tion, parameters, duality, primitivity, polynomial property and automorphisms. Finally,
Chapter 8 discusses the eigenvalues of the association scheme of quadratic forms and its
fusions and their dual schemes.

These association schemes of matrices are from transitive permutation groups with a
regular abelian subgroup. Their constructions are based on the normal forms of matrices
under the general linear group. When treating the parameters, an effective approach is to
use the enumeration formulas of subspaces of various types in the geometries of classical
groups. We use Wan’s book [22] extensively. In order to help the reader become familiar
with the matrix method, we calculate the parameters of several distance regular graphs
with the matrix method. The automorphism group of these association schemes can be
obtained from the fundamental theorems of the geometry of matrices [21]. For quadratic
forms in even characteristic, we use their matrix representation [22]. When determining
the automorphisms of the association scheme of quadratic forms in even characteristic for
n > 3, we use a result on the automorphism group of the quadratic forms graph [18]. The
case n = 2 is obtained by an argument based on the matrix method. In terms of contents
and historical background, the matrix method was developed by Lou-keng Hua and Zhe-
xian Wan in the study of classical groups. In this monograph, we use the matrix method to
study the association schemes based on matrices.

Chapters 2 to 7 are independent of each other. The reader should be able to read any
other chapter once he reads Chapter 1. Of course, the reader may still need certain materials
that can be found in [22] and [21]. In addition, some topics require certain basic character
theory, which can be found in many books such as [2] or [10].

Some of the materials in this monograph have never been published. We are interested
in any comments and suggestions.

We would like to acknowledge the support and guidance from Prof. Zhe-xian Wan and
thank him for writing the preface. We also thank the following colleagues: Prof. Rongquan
Feng and Dr. Jianmin Ma for help with the draft of Chapter 8, Prof. Suogang Gao for us-



vi Foreword to the Chinese Edition

ing some draft materials in his graduate course and Prof. Kaishun Wang for reading the
manuscript and for checking certain calculations. They have provided us valuable com-
ments. Finally, we acknowledge the financial support of Hebei Normal University and the
scientific publishing foundation of the Chinese Academy of Science. We also appreciate
the support of our editor Hong Lii of Science Press.

Beijing Yangxian Wang
Qionghai Yuanji Huo
Shijiazhuang Changli Ma

April, 2009
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Chapter 1
Basic Theory of Association Schemes

1.1 Definition of Association Scheme

Let X be a nonempty set of cardinality #» and Ry, Ry, ... ,Rq be subsets of X x X that satisfy
the following conditions:
(i) Ro={(xx)|x€ X};
(ii) XXX=ROUR1U---URd,RiﬂRj =0 (i#)),
(iii) for each i € {0,1,...,d}, there exists some # € {0,1,...,d} such that 'R; = Ry,
where ‘R; = {(x,y)|(»,x) € R;};
(iv) forany i, j,k € {0,1,...,d}, the number

Pl = {z € X|(x,2) €R, (z.y) €R;}|

is constant whenever (x,y) € Ry.

Such a configuration X = (X, {R; }o<i<4) is called an association scheme of class d on X.
Ry is called the trivial or diagonal relation, while the others are called nontrivial relations.
Note that d is the number of nontrivial relations. The numbers p{-‘j are called the intersection
numbers of X. The association scheme X is said to be commutative if

v) pf; = pkforalli, j,k € {0,1,...,d}.
Further, X is said to be symmetric (or the Bose-Mesner type) if

(vi) i =iforallie {o0,1,...,d}.

If X is symmetric, then it is commutative. But the converse does not always hold. In
the rest of this book, association schemes are assumed to be commutative unless specified
otherwise.

Letk; = pg.,. The number k; is the number of y € X such that (x,y) € R; for any fixed
x € X. Itis called the valency of R;. Clearly,

ko=1, ki=ky, |X|=ko+ki+ - +ky.
Let & be the Kronecker delta: §; = 1 and §;; = 0 for i # j.

Proposition 1.1. The following hold:

@) p§; = Ok
(i) ply = 8.
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(iii) p?j = k8.
) ply = pff,,
W) E, 017,, k;.
(vi) kyP af = kﬁpg y = kap;fﬁ/
(vii) 24— Opszka Eﬁ oszPﬂJ'
Proof. (i) For any (x,y) € Ry,

pb; = {z € X|(x,2) € Ro, (z,y) €R;}.

Since (x,z) € Ro, z=x. If j # k, no such z exists; if j =k, z=1x.
(ii) Similar to (i).
(iii) For x € X,
pj = {z € X|(x,2) € Ri, (z,%) € R;}|-
If /' + i, no such z exists; if j/ = i, there are k; such z.
(iv) If (x,y) € Ry, (3,x) € Ry. Thus,

Pl = {z € X|(x,2) € Ri, (z,y) € R;}|
= {z € X|(2,x) € Ry, (0,2) €Rj} = phiy.
Since X is commutative, p 1 p/ s

(v) For a fixed pair (x, y) € Rk, count the number of z € X such that (x,z) € R;.
(vi) Count in different ways the number of triples (x,y,z) with

(x,y) €Ry, (x,2) €Ra, (z,y) ERg.

For example for each fixed x, there are ky vertices y such that (x,y) € R'y For each y, there
are p’ «p Vertices z such that (x,z) € Ry and (z,y) € Rg. We have |X ky ! op Such triples.

(vii) For a fixed pair (x,y) € R;, count the number of pairs (z,w) such that (x,z) €
Ry, (z,w) € R;, (w,y) €R;.

x ! ¥y

For o € {0,1,...,d}, there are p , vertices z such that (x,z) € Ry and (z,y) € Rq;
for each z, there are pf; vertices w such that (z,w) € R; and (w,y) € R;. Hence, there are
e _opf J .ph, pairs (z,w). Similarly, there are Z‘é=0 pfiplﬁ j pairs (z,w) if we count w first
and then z. a

For a commutative association scheme X = (X, {Ri}ogicd), we merge R; and Ry:
" Ri:=R;UR;. Then X = (X,{R;}ogigce) is a symmetric association scheme. Let i)’f.‘j be
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the intersection number of X. Then, by Proposition 1.1 (iv),

X is called the symmetrization of X.

Let X = (X, {Ri}o<i<4) be a commutative association scheme, |X| = n. The adjacency
matrix A; of R; is the matrix of degree n whose rows and columns are indexed by the
elements of X and whose (x,y) entry

1) if(x’y)ekia
Aoy =
(Ai)sy {0, otherwise.

Conditions (i) to (v) in the definition of an association scheme are equivalent to the fol-
lowing conditions (i) to (v'):
(i) Ag = I, the identity matrix;
(ii) Ag+A1+---+ A, =J, the all-one matrix;
(iii') 'A; = Ay
(iv) AA; = Zzzop{-‘jAk, i,j€{0,1,...,d};
V) AA;=AA; 6, j€{0,1,...,d}.

If there are (0,1) matrices Ag,A,...,As satisfying conditions (i') to (v') with p{-‘j non-
negative integers, then there exists a commutative association scheme X = (X, {R;}o<i<a)
such that |X| = n, A; are the adjacency matrices of R; and pf-‘j are the intersection numbers
of X.

Let M,,(C) be the full matrix algebra of degree n over the complex numbers C. Condi-
tions (i’) to (v') imply that the adjacency matrices Ag, A, ...,A, generated a commutative
subalgebra of M, (C):

A=CAg+CA; +---+CA,.

2 has dimension dim¢c % = d + 1. The algebra 2 is called the adjacency algebra or Bose-
Mesner algebra of X. Moreover, Ag,A;,...,A, is a basis of 2.

From Proposition 1.1 (iv), the mapping A; — Ay is an automorphism of 2 of period
2. Consider the left regular representation of 2: each A in 2 corresponds to the linear
transformation A; of 2, where Ay : Y — AY for all Y € 2. Now, consider the matrix of
Ar with respect to the basis Ag,A;,...,Aq. Let AAj = Zfzo ajtAy. Then A = (aj) is the
matrix of Ay. Further, the correspondence A to ‘A is a homomorphism from 2 to M1 (C).
Since 2 has the identity I, it is an isomorphism. For a basis element A;,

d
AAj =Y pliAk.
k=0

Let B; be the matrix of degree d + 1 whose (j,k) entry is pfj. Then 'B; is the matrix of
the linear transformation (A;).. Since 21 is commutative, the correspondence A; — B; (i =
0,1,...,d) is an isomorphism of 2 to M, .| (C). So, we have proved:

Theorem 1.1. Ler X = (X,{Ri}ocica) be a commutative association scheme. Let Ao,
Ay,..., Ay be the adjacency matrices and pf-‘j be the intersection numbers. Let B be the
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subalgebra of My \(C) spanned by By,B\,...,B,. Then the adjacency algebra 9 is iso-
morphic to B by the correspondence A; — B;. In particular, A; and B; have the same
minimal polynomial. O

The matrices B; = (pf;) are called the intersection matrices of X, and the algebra B is
called the intersection algebra of X.
If X is commutative, then

d
B'BJ:ZPZBIH i:jzo,l,...,d.
k=0
On the other hand, if X is not necessarily commutative, then

d
‘B/'Bj =Y, p\/Br, i,j=0,1,....d.
k=0

1.2 Examples

We give two examples of association schemes. Since groups and association schemes share
certain natural connections, we start with permutation groups.

Example 1.2. Let G be a finite group acting transitively on a finite set Q. This induces an
action on  x Q: for (x,y) € Q x Q and o € G,

() = (x%,5%).

Then G no longer acts transitivelyon Q x Q if | Q| =n > 1. Let Ag, Ay, ..., Ay be the orbits
of G on Q x Q, where Ag = {(x,x)|x € Q}. Then X = (2, {Ai}o<ica) is an association
scheme (not necessarily commutative). D

In fact, the axioms (i) to (iii) for the association scheme hold by definition. Now, con-
sider (iv). For any two pairs (x,y), (x',y’) in Ay, there is some o € G such that x® = x’ and
y° =y. We have

{Z’l(xlvzl) S Ai; (Zlay’) € Aj} = {Z|(x,Z) S Ai?(zvy) € AJ}G

Therefore, the number pf-‘j does not depend on the choice (x,y) in Ay.
For any x € Q, let
Ai(x) = {y € Q|(x,y) € Ai}.

Then Ag(x) = {x},A1(x),...,Aq(x) are the orbits of the stabilizer G, of x in G on Q.
Moreover, k; = |A;(x)].

We now consider the adjacency algebra of X. Let A be the permutation representation
of G on Q. For each o € G, define the matrix A(o) as follows:

(A(c))w = ‘Sx"y-



1.2 Examples 5

Let A(G) = {A(0)|o € G} € M,(C). Then A is a homomorphism from G to A(G). For
any matrix X = (X,;) in M,(C),

(A()XA(0) Ny =3 Sr05Xs8 g1, = Xeoyo.

sEQ

This means that X = (X,,) commutes with all A(c) (6 € G) if and only if the condition
holds: Xy, = X,0y0 forall o € G. Note that each adjacency matrix A; satisfies this condition.
Since Ag+A; +---+Ag =J, any matrix X that commutes with all A(0) (o € G) is a linear
combination of Ag,Ay,...,A,. Thus, the adjacency algebra 2 of X is the centralizer algebra
of A(G) in M, (C).

According to the (ordinary) representation theory, A is the direct sum of irreducible
representations of G. By Schur’s Lemma, 2 is commutative if and only if each irreducible
representation in A has multiplicity one.

Theorem 1.3. Suppose that G is a finite group acting transitively on a finite set Q of
cardinality n. (G,Q) determines an association scheme ¥ = (R, {Ai}ogica) (not neces-
sarily commutative), where d + 1 is the number of orbits of the stabilizer G, on 2 for any
x € L. The adjacency algebra 2 of X is precisely the centralizer algebra of the permuta-
tion representation A of G on Q in M, (C). Moreover, X is commutative if and only if each
irreducible representation appearing in A has multiplicity one. 0

Now let us discuss the second example.

Example 1.4. Let X be a finite group. Each element b € X determines a permutation of X
by right multiplication: 1, : x — xb. It is called the right translation of b. All right trans-
lations of X become a group under the function composition, denoted by T(X ). Clearly,
T(X) acts transitively on X. Let Gy be an automorphism group of X. Let G be the group
generated by Go and T (X). In fact, G = Go - T(X), the semi-direct product of T(X) and
Go. Each element in G is the unique product of an element in Gy and an element in T(X):
oty with 6 € Go and t, € T(X). Each Oty defines a permutation on X by

%% =x°b forallxeX.

G acts on X transitively. By the above example, it determines an association scheme X on
X. O

Let us first determine the relations of X. If (x,y) and (x,y’) are in the same orbit of G,
then there exists some element 07, in G such that (x,y)%% = (x',y'):

XI:xab, yI:yO'b.

Hence, y'X'~! = (yx~1)9, and thus y’¥'~! and yx~! are in the same orbit of Gy. Conversely,
if two pairs (x,y) and (x’,y’) are such that yx~! and y'x’~! are in the same orbit of Gy, then
there is some element o in Go such that y'x'~! = (3x~1)% = yo(x7) ™1 Set b= (y°)~ly/(=
(x°)"'¥). Hence, ¥ = x°b and ¥ = y®b, i.e., (,¥') = (x,y)%. So (x,y) and (¥,y’) are
in the same orbit of G. Now we see that the orbits of (G, X ) determine the relations of X.
Let Xo = {1},X1,...,X, be all the orbits of Gy. The relation R; of X; is
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Ri={(xy) e X xX|px e X}

Hence, X = (X,{R;i}o<i<d)-

Now we consider the adjacency algebra 2 of X. Let R = C[X| be the group algebra of X
over the complex numbers C. It consists of all formal C-linear combinations of elements
of X, with the obvious rule for addition and with multiplication defined by extending the
multiplication in X. For each orbit X; of Gy, let

X; = 2 x.
x€X;
X0,X1,...,X, are elements of C[X] and

XiX;=Y Y o

xeX; yeX;

If an element in X; appears as a product term xy (= c) on the right-hand side of the above
expression, every other element ¢’ in X; also appears. In fact, all elements of X; appear the
same number of times in this product. Therefore,

d
XiX; =Y X, (1.1)
k=0
where c{‘l are nonnegative integers. Xo, X, ..., Xy generates a subalgebra of C[X], denoted

by &. It is called a Schur ring on X.
Let pf; be the intersection numbers of X. We claim: cf; = p%. Fix a pair (x,y) € Ry, i.e.,
yx~! € X;. By definition,

Phi={z€X|(x,2) €R;, (z,y) ER}|.

We count the number of elements z with zx~! € X; and yz~! € X;. Since yz~!- zx ! = yx~1,
by (1.1) there are exactly c{Fj pairs (a,b) € X; x X; with ab = yx~1. Set z = a~!y. Now,
yil=aeX, o l=alyx ! =beX;. So, (x,2) € Rj, (z,y) € R;. The pairs (a,b) € X; %
X; with ab = yx~! are in one-to-one correspondence with the elements z with zx~! € X;
and yz~! € X;. This proves the claim.

This claim means that the adjacency algebra 2 of X is anti-isomorphic to the Schur ring
6. X is commutative if and only if & is commutative. In particular, X is symmetric if each
X; is inverse-closed. A subset C of X is inverse-closed if x~! € C whenever x € C. We get
the following result.

Theorem 1.5. Let X be a finite group and T (X) be the group of right translations of X. Let
Go be an automorphism group of X. Suppose G = (Gy, T(X)), the group generated by Gy
and T(X ). Then G acts transitively on X. Hence, this action determines a (not necessarily
commutative) association scheme X = (X, {R;}o<ica), where d + 1 is the number of orbits
of GoonX. Let Xo = {1},X1,...,X, be the orbits of Gy on X. Then Xo,X1,..., X4 generate
a Schur ring & over X, where X; = 3, cx, x. The adjacency algebra of X and G are anti-
isomorphic. X is commutative if and only if & is commutative. In particular, X is symmetric
if each X; is inverse-closed, i.e., x € X; ifand only if x ! € X;. o



