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Preface

This is intended as a textbook on the history, philosophy and foundations
of mathematics, primarily for students specializing in mathematics, but we
also wish to welcome interested students from the sciences, humanities and
education. We have attempted to give approximately equal treatment to
the three subjects: history, philosophy and mathematics.

History

We must emphasize that this is not a scholarly account of the history of
mathematics, but rather an attempt to teach some good mathematics in a
historical context. Since neither of the authors is a professional historian,
we have made liberal use of secondary sources. We have tried to give ref-
erences for cited facts and opinions. However, considering that this text
developed by repeated revisions from lecture notes of two courses given by
one of us over a 25 year period, some attributions may have been lost. We
could not resist retelling some amusing anecdotes, even when we suspect
that they have no proven historical basis. As to the mathematicians listed
in our account, we admit to being colour and gender blind; we have not
attempted a balanced distribution of the mathematicians listed to meet
today’s standards of political correctness.

Philosophy

Both authors having wide philosophical interests, this text contains perhaps
more philosophical asides than other books on the history of mathematics.
For example, we discuss the relevance to mathematics of the pre-Socratic
philosophers and of Plato, Aristotle, Leibniz and Russell. We also have
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presented some original insights. However, on some points our opinions
diverge; so, in a spirit of compromise, we have agreed to excise some of our
more extreme views. Some of these divergent opinions have been expressed
in Anglin [1994] and Lambek [1994].

Mathematics

One of the challenges one faces in offering a course on the history and phi-
losophy of mathematics is to persuade one’s colleagues that the course con-
tains some genuine mathematics. For this reason, we have included some
mathematical topics, usually not treated in standard courses, for exam-
ple, the renaissance method for solving cubic equations and an elementary
proof of the impossibility of trisecting arbitrary angles by ruler and compass
constructions. We have taken the liberty of presenting many mathematical
ideas in modern garb, with the hindsight inspired by more recent develop-
ments, since a presentation faithful to the original sources, while catering
to the serious scholar, would bore most students to tears.

In Part I we deal essentially with the history of mathematics up to about
1800. This is because thereafter mathematics tends to become more spe-
cialized and too advanced for the students we have in mind. However, we
make occasional excursions into more modern mathematics, partly to re-
lieve the tedium associated with a strictly chronological development and
partly to present modern answers to some ancient questions, whenever this
can be done without overly taxing the students’ ability.

In Part II we deal with some selected topics from the nineteenth and
twentieth centuries. In that period, mathematics became rather special-
ized and made spectacular progress in different directions, but we confine
attention to questions in the foundations and philosophy of mathematics.

The more universal aspects of mathematics are sketched briefly in the
last five sections. We introduce the language of category theory, which at-
tempts a kind of unification of different branches of mathematics, albeit at
a very basic and abstract level.
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Introduction

Remarks on prehistory

Long before written records were kept, people were concerned with the sea-
sons, important in agriculture, and the sky, which permitted them to read
off the passage of time. Everyone knows that the year is the time it takes
the sun to complete its orbit about the earth. (Copernicus notwithstanding,
mathematical readers will see nothing wrong with placing the origin of the
coordinate system at the center of the earth.) Also, a month is supposed
to be the time it takes the moon to go around the earth; at least, this was
the case before the lengths of the months were laid down by law. But what
about the week? Theological explanations aside, it is the smallest period,
longer than a day, that can be easily observed by looking at the sky: the
time it takes the moon to pass from one phase to another, from new moon
to half moon, from half moon to full moon, etc.

The days of the week are named after the sun, the moon and the five
planets visible to the naked eye: Mars (French mardi), Mercury (French
mercreds), Jupiter (French jeudi), Venus (French vendred:) and Saturn (En-
glish Saturday). The English Tuesday, Wednesday, Thursday and Friday
are named after the Teutonic deities which supposedly correspond to the
Roman gods after whom the planets were named.

In Hindu astronomy there are nine planetary deities, the graha. In addi-
tion to the seven associated with the days of the week, there are two others,
rehu and kebu, alleged to be associated with the so-called ‘nodes’. These
are the points where the orbits of the sun and the moon, when traced out
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on the firmament, intersect. (See Freed and Freed [1980].) The importance
of the nodes is that an eclipse of the sun or the moon can only occur when
both sun and moon fall on the nodes, to within 10°; according to an ancient
rule of thumb, this was supposed to happen once in about 18.6 years.

At Stonehenge in England there is an imposing prehistoric monument,
dating from about 2,500 BC. The huge standing stones of the monument
were presumably used to sight the points on the horizon where the sun
and the moon, and perhaps Venus, rise and set at certain dates (Hawkins
[1965]). They are surrounded by a circle of 56 holes in the ground, and Fred
Hoyle [1977] has proposed the ingenious hypothesis that these were used
as a calendar and to calculate the dates of possible eclipses.

According to Hoyle, the idea was to move a sun marker two holes in 13
days, a moon marker two holes each day, and two nodal stones three holes
per year. The sun marker would thus complete an orbit in 364 days; the
discrepancy could be fixed by appropriate adjustments at midsummer and
midwinter. The moon marker would complete an orbit in 28 days, that is,
four weeks. Of course, this should really be 29.5 days, so adjustments might
have to be made each full moon and each new moon. The nodal stones
would take 56/3 years to perform a complete orbit. On those occasions
when both sun marker and moon marker were about to catch up with the
nodal stones, the presiding priest could risk predicting an eclipse.

Foreword on history

Even so-called ‘primitive’ societies may be engaged in some fairly sophis-
ticated mathematical activities, for example, the calculations involved in
kinship descriptions. (How many students can tell on the spot what ex-
actly is a second cousin three times removed?) For interested readers, we
recommend two recent books: Africa Counts by Claudia Zaslovsky and
Ethnomathematics by Marcia Ascher.

Mathematics, as usually conceived, begins with the development of agri-
culture in the river valleys of Egypt, Iraq, India and China. If we pay more
attention to the Near East than to the Far East, this is because the former
has provided us with more accessible records and because modern mathe-
matics can be traced back directly to it. We possess written records con-
cerning the state of mathematics in Egypt and Mesopotamia (Iraq) from as
early as about 2000 BC. Around 500 BC, mathematical knowledge spread
to the Greek world. This included not only modern Greece, but also the
coast of Asia Minor (modern Turkey) and Magna Grecia (southern Italy
and Sicily). About 300 BC, the center of mathematics moved from Athens
to Alexandria in Egypt, where it was to remain for the next 800 years; for
it was in Alexandria that all the books were kept.

Around 500 AD, mediterranean civilization finally came to a stop, per-
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haps because of the repeated impact of epidemic diseases. About 800 AD,
mathematics in the Alexandrian tradition resurfaced in India, which had a
long mathematical tradition of its own. The Arabs, aided by translations
of Greek texts, developed and transmitted mathematical knowledge from
India back to the mediterranean area and ultimately to Europe. During the
so-called ‘renaissance’, mathematics flourished in Italy and, aided by the
Chinese invention of printing, spread to Western and Central Europe. Of

course, today mathematics is being pursued in all the industrial countries
of the world.

Introduction to the number system

The historical and pedagogical development of the number system goes
somewhat like this:

Nt-Qt-Rt—-R->C-—-H.

Here N* is the set of positive integers, the numbers used for counting,
known to all societies. Q7 is the set of positive rationals, namely, quotients
of positive integers, surely known to all agricultural civilizations. At one
time, they were believed to exhaust all the numbers, until the Pythagore-
ans discovered that the diagonal of a square was not a rational multiple
of its side. We use R* to denote the positive reals; these were certainly
used effectively by Thales, though the Greeks originally tended to regard
them as ratios of geometric quantities. A formal treatment, anticipating
the nineteenth century definition by Dedekind, was first given by Eudoxus
in Athens. The transition from R* to R, the set of all reals, positive, zero
and negative, took place in India and may be ascribed to Brahmagupta.
The set C of complez numbers was first considered by Cardano to describe
the intermediate steps in solving a cubic equation with real coefficients and
three real solutions. The set H of quaternions is named after their inventor
William Hamilton, who may have been preceded by Olinde Rodrigues and
perhaps even by Carl Friedrich Gauss.

Most of the advances in the development of the number system may
have been motivated by the desire to solve equations. Thus, the equations
2z =3, 2z2=2, £+ 1=0and 2 + 1 = 0 led to the successive introduc-
tion of Q*,R*, R and C, respectively. However, all polynomial equations
with complex coefficients do have complex solutions, so the introduction of
quaternions requires a different justification. They were motivated by the
desire to pass from the plane, describable by complex numbers, to three or
four dimensions.



