2890 v GEHURL S 2 AR BBl

HEHLEF BT EAR
B4k BOM OWikhin)
AT AR RERE

The Art of Computer
Programming, Volume 4
Introduction to
Combinatorial Algorithms
and Boolean Functions

BHIB &EF Fascicle

() Donald E.Knuth 3%

@ ML T MR
¥ China Machine Press

BB B

A
B4k Fom

H 5 Fk S AR R B e
i | |
The Art of Computer Programming
Volume 4, Fascicle O

Introduction to Combinatorial
Algorithms and Boolean Functions

OM % 1)

CO N L
WiH AR KA

W %k

BT WK

China Machine Press

AHE CGHREILBFETZR, #4558 AAHZ) WEOM. AWML THAHED
WEFHRL, WRAGHEBRANERMEERALR: B8R T 54 /REBHHENRE EEH
B, Bg T BRI E - MR ERENER, A2 GHENBRFZIZA)
IR, MHERBEX -KBERIENH,

Simplified Chinese edition copyright © 2010 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: The Art of Computer Programming, Volume 4, Fascicle 0,
Introduction to Combinatorial Algorithms and Boolean Functions by Donald E. Knuth ,
Copyright © 2008.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

A5 [Nk f Pearson Education (i A:#H HREH) BOLHTAIRE, TIREE TR
i,

HIERT B DRI H B
B AE, BRAR
EHEEME ERTRARTESH

EPRENEFICS . EF:. 01-2009-1359
BBERRE (CIP) iR

HENLERFRUTZER F4s FOM. HERESEH/REREIE QUER) / (£) &
%% (Knuth,D.E.) &, #HMiE. —dbst. Sk Tl HAkEE, 20106

FZJE L. The Art Of Computer Programming, Volume 4, Fascicle 0, Introduction to
Combinatorial Algorithms and Boolean Functions

ISBN 978-7-111-30334-3
Loibe 1.0 & ©#%- I EFEH-3%. @ V. TP311.1
IR A B B CIPRGR B (2010) 50630835

HLAR Tl HAR #E (bt R ¢i 5 k#7224 IS 100037)
TS sk

b B ED A FR A W] B

2010 4E 8 H B 1H S 1ik EN 4|

170mm x 242mm . 28E[2k

b2, ISBN 978-7-111-30334-3

Efr: 69.007C

LA, ko, BT, BRI, dmARTERGR

ZAR#hes. (010) 88378991, 88361066
WyFsaes. (010) 68326294, 88379649, 68995259
HEshe:. (010) 88379604

%EEH: hzjsi@hzbook.com

PREFACE

To put all the good stufr into one book is patently impossible,
and attempting even to be reasonably comprehensive
about certain aspects of the subject is likely to lead to runaway growth.

— GERALD B. FOLLAND, “Editor’'s Corner” (2005)

La derniere chose qu'on trouve en faisant un ouvrage
est de savoir celle qu'il faut mettre la premiere.

— BLAISE PASCAL, Pensées 740 (c.1660)

THis BOOKLET is Fascicle 0 of The Art of Computer Programming, Volume 4:
Combinatorial Algorithms. As explained in the preface to Fascicle 1 of Volume 1,
P'm circulating the material in this preliminary form because I know that the
task of completing Volume 4 will take many years; I can’t wait for people to
begin reading what I've written so far and to provide valuable feedback.

To put the material in context, this fascicle contains the opening sections
intended to launch a long, long chapter on combinatorial algorithms. Chapter 7
is planned to be by far the longest single chapter of The Art of Computer
Programming; it will eventually fill at least three volumes (namely Volumes
4A, 4B, and 4C), assuming that I'm able to remain healthy. Like the second-
longest chapter (Chapter 5), it begins with pump-priming introductory material
that comes before the main text, including dozens of exercises to get the ball
rolling. A long voyage lies ahead, and some important provisions need to be
brought on board before we embark. Furthermore I want to minimize the shock
of transition between Chapter 6 and the new chapter, because Chapter 6 was
originally written and published more than thirty years ago.

Chapter 7 proper begins with Section 7.1: Zeros and Ones, which is another
sort of introduction, at a different level. It dives into the all-important topics that
surround the study of Boolean functions, which essentially underly everything
that computers do. Subsection 7.1.1, “Boolean basics,” attempts to erect a solid
foundation of theoretical and practical ideas on which we shall build significant
superstructures later; subsection 7.1.2, “Boolean evaluation,” considers how to
compute Boolean functions with maximum efficiency.

The remaining parts of Section 7.1 —namely 7.1.3, “Bitwise tricks and
techniques,” and 7.1.4, “Binary decision diagrams” — will be published soon as
Volume 4, Fascicle 1. Then comes Section 7.2, Generating All Possibilities;
the fascicles for Section 7.2.1, “Generating basic combinatorial patterns,” have
already appeared in print. Section 7.2.2 will deal with backtracking in general.

iv PREFACE

And so it will go on, if all goes well; an outline of the entire Chapter 7 as currently
envisaged appears on the taocp webpage that is cited on page ii.

These introductory sections have turned out to have more than twice as
many exercises as I had originally planned. In fact, the total number of exercises
in this fascicle (366) is almost unbelievable. But many of them are quite simple,
intended to reinforce the reader’s understanding of basic definitions, or to ac-
quaint readers with the joys of The Stanford GraphBase. Other exercises were
simply irresistible, as they cried out to be included here — although, believe it
or not, I did reject more potential leads than I actually followed up.

I would like to express my indebtedness to the late Robert W Floyd, who
made dozens of valuable suggestions when I asked him to look over the first draft
of this material in 1977. Thanks also to Robin Wilson of the Open University for
his careful reading and many detailed suggestions; and to hundreds of readers
who provided fantastic feedback on early drafts that circulated on the Internet.

I shall happily pay a finder’s fee of $2.56 for each error in this fascicle when
it is first reported to me, whether that error be typographical, technical, or
historical. The same reward holds for items that I forgot to put in the index.
And valuable suggestions for improvements to the text are worth 32¢ each.
(Furthermore, if you find a better solution to an exercise, I'll actually reward
you with immortal glory instead of mere money, by publishing your name in the
eventual book:—)

Notations that are used here and not otherwise explained can be found in
the Index to Notations at the end of Volumes 1, 2, or 3. Those indexes point
to the places where further information is available. (See also the entries under
“Notation” in the present booklet.) Of course Volume 4 will some day contain
its own Index to Notations.

Machine-language examples in all future editions of The Art of Computer
Programming will be based on the MMIX computer, which is described in Vol-
ume 1, Fascicle 1.

Cross references to yet-unwritten material sometimes appear as ‘00’ in the

following pages; this impossible value is a placeholder for the actual numbers to
be supplied later.

Happy reading!

Stanford, California D.E. K.
January 2008

PREFACE TO VOLUME 4

THE TITLE of Volume 4 is Combinatorial Algorithms, and when I proposed it
I was strongly inclined to add a subtitle: The Kind of Programming I Like Best.
My editors have decided to tone down such exuberance, but the fact remains
that programs with a combinatorial flavor have always been my favorites.

On the other hand I've often been surprised to find that, in many people’s
minds, the word “combinatorial” is linked with computational difficulty. Indeed,
Samuel Johnson, in his famous dictionary of the English language (1755), said
that the corresponding noun “is now generally used in an ill sense.” Colleagues
tell me tales of woe, in which they report that “the combinatorics of the sit-
uation defeated us.” Why is it that, for me, combinatorics arouses feelings of
pure pleasure, yet for many others it evokes pure panic? '

It’s true that combinatorial problems are often associated with humongously
large numbers. Johnson’s dictionary entry also included a quote from Ephraim
Chambers, who had stated that the total number of words of length 24 or less,
in a 24-letter alphabet, is 1,391,724,288,887,252,999,425,128,493,402,200. The
corresponding number for a 10-letter alphabet is 11,111,111,110; and it’s only
3905 when the number of letters is 5. Thus a “combinatorial explosion” certainly
does occur as the size of the alphabet grows from 5 to 10 to 24 and beyond.

Computing machines have become tremendously more powerful throughout
my life. As I write these words, I know that they are being processed by a “lap-
top” whose speed is more than 100,000 times faster than the trusty IBM Type 650
computer to which I'm dedicating these books; my current machine’s memory
capacity is also more than 100,000 times greater. Tomorrow’s computers will be
even faster and more capacious. But these amazing advances have not diminished
people’s craving for answers to combinatorial questions; quite the contrary. Our
once-unimaginable ability to compute so rapidly has raised our expectations,
and whetted our appetite for more — because, in fact, the size of a combinatorial
problem can increase more than 100,000-fold when n simply increases by 1.

Combinatorial algorithms can be defined informally as techniques for the
high-speed manipulation of combinatorial objects such as permutations or graphs.
We typically try to find patterns or arrangements that are the best possible ways
to satisfy certain constraints. The number of such problems is vast, and the art
of writing such programs is especially important and appealing because a single
good idea can save years or even centuries of computer time.

. Indeed, the fact that good algorithms for combinatorial problems can have a
terrific payoff has led to terrific advances in the state of the art. Many problems
that once were thought to be intractable can now be polished off with ease, and

vi PREFACE TO VOLUME 4

many algorithms that once were known to be good have now become better.
Starting about 1970, computer scientists began to experience a phenomenon
that we called “Floyd’s Lemma”: Problems that seemed to need n® operations
could actually be solved in O(n?); problems that seemed to require n? could be
handled in O(nlogn); and nlogn was often reducible to O(n). More difficult
problems saw a reduction in running time from O(2™) to O(1.5™) to O(1.3™),
etc. Other problems remained difficult in general, but they were found to have
important special cases that are much simpler. Many combinatorial questions
that I once thought would never be answered have now been resolved, and these
breakthroughs are due mainly to improvements in algorithms rather than to
improvements in processor speeds.

By 1975, such research was advancing so rapidly that a substantial fraction
of the papers published in leading journals of computer science were devoted
to combinatorial algorithms. And the advances weren’t being made only by
people in the core of computer science; significant contributions were coming
from workers in electrical engineering, artificial intelligence, operations research,
mathematics, physics, statistics, and other fields. I was trying to complete
Volume 4 of The Art of Computer Programming, but instead I felt like I was
sitting on the lid of a boiling kettle: I was confronted with a combinatorial
explosion of another kind, a prodigious explosion of new ideas!

This series of books was born at the beginning of 1962, when I naively
wrote out a list of tentative chapter titles for a 12-chapter book. At that time
I decided to include a brief chapter about combinatorial algorithms, just for
fun. “Hey look, most people use computers to deal with numbers, but we can
also write programs that deal with patterns.” In those days it was easy to give
a fairly complete description of just about every combinatorial algorithm that
was known. And even by 1966, when I'd finished a first draft of about 3000
handwritten pages for that already-overgrown book, fewer than 100 of those
pages belonged to Chapter 7. I had absolutely no idea that what I’d foreseen as
a sort of “salad course” would eventually turn out to be the main dish.

The great combinatorial fermentation of 1975 has continued to churn, as
more and more people have begun to participate. New ideas improve upon the
older ones, but rarely replace them or make them obsolete. So of course I've had
to abandon any hopes that I once had of being able to surround the field, to write
a definitive book that sets everything in order and provides one-stop shopping
for everyone who has combinatorial problems to solve. It’s almost never possible
to discuss a subtopic and say, “Here’s the final solution: end of story.” Instead,
I must restrict myself to explaining the most important principles that seem to
underlie all of the efficient combinatorial methods that I’ve encountered so far.
At present I've accumulated more than twice as much raw material for Volume 4
as for all of Volumes 1-3 combined.

This sheer mass of material implies that the once-planned “Volume 4” must
actually become several physical volumes. You are now looking at Volume 4A.
Volumes 4B and 4C will exist someday, assuming that I'm able to remain healthy;
and (who knows?) there may also be Volumes 4D, 4E, ...: but surely not 47Z.

PREFACE TO VOLUME 4 vii

My plan is to go systematically through the files that I've amassed since 1962
and to tell the stories that I believe are still waiting to be told, to the best of
my ability. I can’t aspire to completeness, but I do want to give proper credit to
all of the pioneers who have been responsible for key ideas; so I won’t scrimp on
historical details. Furthermore, whenever I learn something that I think is likely
to remain important 50 years from now, something that can also be explained
elegantly in a paragraph or two, I can’t bear to leave it out. Conversely, difficult
material that requires a lengthy proof is beyond the scope of these books, unless
the subject matter is truly fundamental.

OK, it’s clear that the field of Combinatorial Algorithms is vast, and I can’t
cover it all. What are the most important things that I’m leaving out? My
biggest blind spot, I think, is geometry, because I've always been much better at
visualizing and manipulating algebraic formulas than objects in space. Therefore
I don’t attempt to deal in these books with combinatorial problems that are re-
lated to computational geometry, such as close packing of spheres, or clustering of
data points in n-dimensional Euclidean space, or even the Steiner tree problem in
the plane. More significantly, I tend to shy away from polyhedral combinatorics,
and from approaches that are based primarily on linear programming, integer
programming, or semidefinite programming. Those topics are treated well in
many other books on the subject, and they rely on geometrical intuition. Purely
combinatorial developments are easier for me to understand.

I also must confess a bias against algorithms that are efficient only in
an asymptotic sense, algorithms whose superior performance doesn’t begin to
“kick in” until the size of the problem exceeds the size of the universe. A great
many publications nowadays are devoted to algorithms of that kind. I can
understand why the contemplation of ultimate limits has intellectual appeal and
carries an academic cachet; but in The Art of Computer Programming 1 tend
to give short shrift to any methods that I would never consider using myself in
an actual program. (There are, of course, exceptions to this rule, especially with
respect to basic concepts in the core of the subject. Some impractical methods
are simply too beautiful and/or too insightful to be excluded; others provide
instructive examples of what not to do.)

Furthermore, as in earlier volumes of this series, I’'m intentionally concen-
trating almost entirely on sequential algorithms, even though computers are
increasingly able to carry out activities in parallel. I'm unable to judge what
ideas about parallelism are likely to be useful five or ten years from now, let
alone fifty, so I happily leave such questions to others who are wiser than I.
Sequential methods, by themselves, already test the limits of my own ability to
discern what the artful programmers of tomorrow will want to know.

The main decision that I needed to make when planning how to present this
material was whether to organize it by problems or by techniques. Chapter 5
in Volume 3, for example, was devoted to a single problem, the sorting of data
into order; more than two dozen techniques were applied to different aspects
of that problem. Combinatorial algorithms, by contrast, involve many different
problems, which tend to be attacked with a smaller repertoire of techniques.

viii PREFACE TO VOLUME 4

I finally decided that a mixed strategy would work better than any pure ap-
proach. Thus, for example, these books treat the problem of finding shortest
paths in Section 7.3, and problems of connectivity in Section 7.4.1; but many
other sections are devoted to basic techniques, such as the use of Boolean
algebra (Section 7.1), backtracking (Section 7.2), matroid theory (Section 7.6),
or dynamic programming (Section 7.7). The famous Traveling Salesrep Problem,
and other classic combinatorial tasks related to covering, coloring, and packing,
have no sections of their own, but they come up several times in different places
as they are treated by different methods.

I’ve mentioned great progress in the art of combinatorial computing, but I
don’t mean to imply that all combinatorial problems have actually been tamed.
When the running time of a computer program goes ballistic, its programiners
shouldn’t expect to find a silver bullet for their needs in this book. The methods
described here will often work a great deal faster than the first approaches that
a programmer tries; but let’s face it: Combinatorial problems get huge very
quickly. We can even prove rigorously that a certain small, natural problem will
never have a feasible solution in the real world, although it is solvable in principle
(see the theorem of Stockmeyer and Meyer in Section 7.1.2). In other cases we
cannot prove as yet that no decent algorithm for a given problem exists, but
we know that such methods are unlikely, because any efficient algorithm would
yield a good way to solve thousands of other problems that have stumped the
world’s greatest experts (see the discussion of NP-completeness in Section 7.9).

Experience suggests that new combinatorial algorithms will continue to be
invented, for new combinatorial problems and for newly identified variations or
special cases of old ones; and that people’s appetite for such algorithms will also
continue to grow. The art of computer programming continually reaches new
heights when programmers are faced with challenges such as these. Yet today’s
methods are also likely to remain relevant.

Most of this book is self-contained, although there are frequent tie-ins with
the topics discussed in Volumes 1-3. Low-level details of machine language
programming have been covered extensively in those volumes, so the algorithms
in the present book are usually specified only at an abstract level, independent of
any machine. However, some aspects of combinatorial programming are heavily
dependent on low-level details that didn’t arise before; in such cases, all examples
in this book are based on the MMIX computer, which supersedes the MIX machine
that was defined in early editions of Volume 1. Details about MMIX appear in
a paperback supplement to that volume called The Art of Computer Program-
ming, Volume 1, Fascicle 1; they're also available on the Internet, together with
downloadable assemblers and simulators.

Another downloadable resource, a collection of programs and data called The
Stanford GraphBase, is cited extensively in the examples of this book. Readers
are encouraged to play with it, in order to learn about combinatorial algorithms
in what I think will be the most efficient and most enjoyable way.

Incidentally, while writing the introductory material at the beginning of
Chapter 7, I was pleased to note that it was natural to mention some work of

PREFACE TO VOLUME 4 ix

my Ph.D. thesis advisor, Marshall Hall, Jr. (1910-1990), as well as some work
of his thesis advisor, Oystein Ore (1899-1968), as well as some work of his thesis
advisor, Thoralf Skolem (1887-1963). Skolem’s advisor, Axel Thue (1863-1922),
was already present in Chapter 6.

I'm immensely grateful to the hundreds of readers who have helped me to
ferret out numerous mistakes that I made in early drafts of this volume, which
were originally posted on the Internet and subsequently printed in paperback
fascicles. But I fear that other errors still lurk among the details collected here,
and I want to correct them as soon as possible. Therefore I will cheerfully pay
$2.56 to the first finder of each technical, typographical, or historical error. The

taocp webpage cited on page ii contains a current listing of all corrections that
have been reported to me.

Stanford, California D.E. K.
April 2008

Naturally, | am responsible for the remaining errors—
although, in my opinion, my friends could have caught a few more.

— CHRISTOS H. PAPADIMITRIOU, Computational Complexity (1995)

A note on references. References to IEEE Transactions include a letter code
for the type of transactions, in boldface preceding the volume number. For
example, ‘IEEE Trans. C-35" means the IEEE Transactions on Computers,
volume 35. The IEEE no longer uses these convenient letter codes, but the
codes aren’t too hard to decipher: ‘EC’ once stood for “Electronic Computers,”
‘IT’ for “Information Theory,” ‘SE’ for “Software Engineering,” and ‘SP’ for
“Signal Processing,” etc.; ‘CAD’ meant “Computer-Aided Design of Integrated
Circuits and Systems.”

The author is especially grateful to the Addison—Wesley Publishing Company
for its patience in waiting a full decade for this manuscript
from the date the contract was signed.

— FRANK HARARY, Graph Theory (1968)

Bitte ein Bit!
— Slogan of Bitburger Brauerei (1951)

CONTENTS

=

PREFACE o covereeetorinininnanes iii
PREFACE TO VOLUME 4 -+ v

Chapter 7 Combinatorial Searching

71 Zeros and Ones 47
7.1.1 Boolean Basics «---r-r - 47
7.1.2 Boolean Evaluation ------ 96

Answers to Exercises «+-------rooeeee 134

Index and Glossary -----r-ecn0enee2201

*

-ﬁ',]%* 221

%4%@]—%‘ 223

BT AAEE

7.1 Oﬂ]]_ 274
7.1.1 Z!ﬁ;]*\gﬂﬂ 274
7.1.2 ?ﬁ'/’];;kfﬁ 321

CHAPTER SEVEN

COMBINATORIAL SEARCHING

You shall seeke all day ere you finde them,
& when you have them, they are not worth the search.

— BASSANIQ, in The Merchant of Venice (Actt, Scene 1, Line 117)

Amid the action and reaction of so dense a swarm of humanity,
every possible combination of events may be expected to take place,
and many a little problem will be presented which may be striking and bizarre.

— SHERLOCK HOLMES, in The Adventure of the Blue Carbuncle (1892)

The field of combinatorial algorithms Is too vast to cover
in a single paper or even in a single book.

— ROBERT E. TARJAN (1976)

While jostling against all manner of people

it has been impressed upon my mind that the successful ones
are those who have a natural faculty for solving puzzles.

Life is full of puzzies, and we are called upon

to solve such as fate throws our way.

— SAM LOYD, JR. (1927)

COMBINATORICS is the study of the ways in which discrete objects can be
arranged into various kinds of patterns. For example, the objects might be 2n
numbers {1,1,2,2,...,n,n}, and we might want to place them in a row so that
exactly k¥ numbers occur between the two appearances of each digit k. When
n = 3 there is essentially only one way to arrange such “Langford pairs,” namely
231213 (and its left-right reversal); similarly, there’s also a unique solution when
n = 4. Many other types of combinatorial patterns are discussed below.

Five basic types of questions typically arise when combinatorial problems
are studied, some more difficult than others.

i) Existence: Are there any arrangements X that conform to the pattern?

ii) Construction: If so, can such an X be found quickly?

iii) Enumeration: How many different arrangements X exist?

iv) Generation: Can all arrangements X;, X3, ... be visited systematically?
v) Optimization: What arrangements maximize or minimize f(X), given an

objective function f?)
Each of these questions turns out to be interesting with respect to Langford pairs.
1

2 COMBINATORIAL SEARCHING (F0) 7

For example, consider the question of existence. Trial and error quickly
reveals that, when n = 5, we cannot place {1,1,2,2,...,5,5} properly into ten
positions. The two 1s must both go into even-numbered slots, or both into odd-
numbered slots; similarly, the 3s and 5s must choose between two evens or two
odds; but the 2s and 4s use one of each. Thus we can’t fill exactly five slots of
each parity. This reasoning also proves that the problem has no solution when
n =6, or in general whenever the number of odd values in {1,2,...,n} is odd.

In other words, Langford pairings can exist only when n = 4m—1or n = 4m,
for some integer m. Conversely, when n does have this form, Roy O. Davies has
found an elegant way to construct a suitable placement (see exercise 1).

How many essentially different pairings, L,, exist? Lots, when n grows:

L3 = 1; L4 = 1;
L, = 26; Lg = 150;
Ly = 17,792; Lz = 108,144;
Lys = 39,809,640; Lis = 326,721.800; V)
Lo = 256,814,801,280; Lo = 2,636,337,861,200;

L3 = 3,799,455,942,515,488: La4 = 46,845,158,056,515,936.

[The values of L3 and Loy were determined by M. Krajecki, C. Jaillet, and A. Bui
in 2004 and 2005; see Studia Informatica Universalis 4 (2005), 151-190.] A seat-
of-the-pants calculation suggests that L, might be roughly of order (4n/e3)n+1/2
when it is nonzero (see exercise 5); and in fact this prediction turns out to be
basically correct in all known cases. But no simple formula is apparent.

The problem of Langford arrangements is a simple special case of a general
class of combinatorial challenges called exact cover problems. In Section 7.2.2.1
we shall study an algorithm called “dancing links,” which is a convenient way to
generate all solutions to such problems. When n = 16, for example, that method
needs to perform only about 3200 memory accesses for each Langford pair
arrangement that it finds. Thus the value of L1g can be computed in a reasonable
amount of time by simply generating all of the pairings and counting them.

Notice, however, that Lz4 is a huge number — roughly 5 x 1016, or about 1500
MIP-years. (Recall that a “MIP-year” is the number of instructions executed
per year by a machine that carries out a million instructions per second, namely
31,556,952,000,000.) Therefore it’s clear that the exact value of Lo was deter-
mined by some technique that did not involve generating all of the arrangements.
Indeed, there is a much, much faster way to compute L,, using polynomial
algebra. The instructive method described in exercise 6 needs O(4™n) operations,
which may seem inefficient; but it beats the generate-and-count method by a
whopping factor of order 8((n/e®)*~1/2), and even when n = 16 it runs about
20 times faster. On the other hand, the exact value of Lqq will probably never
be known, even as computers become faster and faster.

We can also consider Langford pairings that are optimum in various ways.
For example, it’s possible to arrange sixteen pairs of weights {1,1,2,2,...,16, 16}
that satisfy Langford’s condition and have the additional property of being “well-

7 COMBINATORIAL SEARCHING 3

balanced,” in the sense that they won’t tip a balance beam when they are placed
in the appropriate order:

166 9152 3 8 2 6 31310912148 11161151 5

R T B I T O S A =0

|

R : T R s SO s ;
: I 1
J

=] =

=1

J

In other words, 15.5:16+14.5:64+-:4+0.5:-8=0.5:114"--4+14.5-4+15.5'7; and
in this particular example we also have another kind of balance, 16+6+-:-+8 =
114+16+---47, hence also 16-16+15-6+---+1-8=1-11+.--415-4416-7.

Moreover, the arrangement in (2) has minimum width among all Langford
pairings of order 16: The connecting lines at the bottom of the diagram show
that no more than seven pairs are incomplete at any point, as we read from left
to right; and one can show that a width of six is impossible. (See exercise 7.)

What arrangements ajas...asz of {1,1,...,16,16} are the least balanced,
in the sense that 2:11 kay is maximized? The maximum possible value turns
out to be 5268. One such pairing— there are 12,016 of them —is

2342131416131551479611512108761391615141181012. (3)

A more interesting question is to ask for the Langford pairings that are
smallest and largest in lexicographic order. The answers for n = 24 are

{abacbdecfgdoersfpgqtuwxvjklonhmirpsjqkhltiunmwvx, (&)
xvwsquntkigrdapaodgikngsvxwutmrpohl jcfbecbhmfejl} o

if we use the letters a, b, ..., w, x instead of the numbers 1, 2, ..., 23, 24.

We shall discuss many techniques for combinatorial optimization in later sec-
tions of this chapter. Our goal, of course, will be to solve such problems without
examining more than a tiny portion of the space of all possible arrangements.

Orthogonal latin squares. Let’s look back for a moment at the early days of
combinatorics. A posthumous edition of Jacques Ozanam’s Recreations math-
ematiques et physiques (Paris: 1725) included an amusing puzzle in volume 4,
page 434: “Take all the aces, kings, queens, and jacks from an ordinary deck of
playing cards and arrange them in a square so that each row and each column
contains all four values and all four suits.” Can you do it? Ozanam’s solution,
shown in Fig. 1 on the next page, does even more: It exhibits the full panoply
of values and of suits also on both main diagonals. (Please don’t turn the page
until you’ve given this problem a try.)

By 1779 a similar puzzle was making the rounds of St. Petersburg, and it
came to the attention of the great mathematician Leonhard Euler. “Thirty-six
officers of six different ranks, taken from six different regiments, want to march
in a 6 x 6 formation so that each row and each column will contain one officer of
each rank and one of each regiment. How can they do it?” Nobody was able to

4 COMBINATORIAL SEARCHING (F0) 7

!\

. |
i WL

Fig. 1. Disorder in the court cards:
No agreement in any line of four.
(This configuration is one of many
ways to solve a popular eighteenth-
century problem.)

find a satisfactory marching order. So Euler decided to resolve the riddle —even
though he had become nearly blind in 1771 and was dictating all of his work
to assistants. He wrote a major paper on the subject [eventually published in
Verhandelingen uitgegeven door het Zeeuwsch Genootschap der Wetenschappen
te Vlissingen 9 (1782), 85-239), in which he constructed suitable arrangements
for the analogous task with n ranks and n regiments when n = 1, 3, 4, 5, 7, 8§,
9, 11, 12, 13, 15, 16, ...; only the cases with n mod 4 = 2 eluded him.

There’s obviously no solution when n = 2. But Euler was stumped when n =
6, after having examined a “very considerable number” of square arrangements
that didn’t work. He showed that any actual solution would lead to many others
that look different, and he couldn’t believe that all such solutions had escaped
his attention. Therefore he said, “I do not hesitate to conclude that one cannot
produce a complete square of 36 cells, and that the same impossibility extends
to the cases n = 10, n = 14 ... in general to all oddly even numbers.”

Euler named the 36 officers ac, a8, av, ad, ae, al, ba, b8, by, bd, be, b(,
co, cﬂr Y 05’ ce, c(a Ada, dBv d’Y’ da) dE, d<7 ea, C,B, €Y, 66, €e, 641 fay fﬂ, f'Ya
6, fe, fC, based on their regiments and ranks. He observed that any solution
would amount to having two separate squares, one for Latin letters and another
for Greek. Each of those squares is supposed to have distinct entries in rows and
columns; so he began by studying the possible configurations for {a,b,¢,d, e, f},
which he called Latin squares. A Latin square can be paired up with a Greek
square to form a “Graeco-Latin square” only if the squares are orthogonal to each
other, meaning that no (Latin, Greek) pair of letters can be found together in
more than one place when the squares are superimposed. For example, if we let
a=Ab=Kc=Q,d=J,a=&, B=@8,7v=<,and § =, Fig. 1 is equivalent

7 ‘ COMBINATORIAL SEARCHING 5

to the Latin, Greek, and Greeco-Latin squares

d a b ¢ vy § B o dy ad b8 co
c b a d B a v 6 3 ba avy dé
a d ¢c b|’ta B8 & ~|° and ax df c§ by |-’ (5)
b ¢ d a d v a A b5 ¢y da aff

Of course we can use any n distinct symbols in an n xn Latin square; all that
matters is that no symbol occurs twice in any row or twice in any column. So
we might as well use numeric values {0,1,...,n—1} for the entries. Furthermore
we’ll just refer to “latin squares” (with a lowercase “1”), instead of categorizing
a square as either Latin or Greek, because orthogonality is a symmetric relation.

Euler’s assertion that two 6 x 6 latin squares cannot be orthogonal was
verified by Thomas Clausen, who reduced the problem to an examination of 17
fundamentally different cases, according to a letter from H. C. Schumacher to
C. F. Gauss dated 10 August 1842. But Clausen did not publish his analysis.
The first demonstration to appear in print was by G. Tarry [Comptes rendus,
Association frangaise pour I'avancement des sciences 29, part 2 (1901), 170-203),
who discovered in his own way that 6 x 6 latin squares can be classified into 17
different families. (In Section 7.2.3 we shall study how to decompose a problem
into combinatorially inequivalent classes of arrangements.)

Euler’s conjecture about the remaining cases n = 10, n = 14, ... was
“proved” three times, by J. Petersen [Annuaire des mathématiciens (Paris: 1902),
413-427], by P. Wernicke [Jahresbericht der Deutschen Math.-Vereinigung 19
(1910), 264-267], and by H. F. MacNeish {Annals of Math. 23 (1922), 221-227].
Flaws in all three arguments became known, however; and the question was still
unsettled when computers became available many years later. One of the very
first combinatorial problems to be tackled by machine was therefore the enigma
of 10 x 10 Greeco-Latin squares: Do they exist or not?

In 1957, L. J. Paige and C. B. Tompkins programmed the SWAC computer to
search for a counterexample to Euler’s prediction. They selected one particular
10 x 10 latin square “almost at random,” and their program tried to find another
square that would be orthogonal to it. But the results were discouraging, and
they decided to shut the machine off after five hours. Already the program
had generated enough data for them to predict that at least 4.8 x 10!* hours of
computer time would be needed to finish the run!

Shortly afterwards, three mathematicians made a breakthrough that put
latin squares onto page one of major world newspapers: R. C. Bose, S. S. Shri-
khande, and E. T. Parker found a remarkable series of constructions that yield
orthogonal n X n squares for all n > 6 [Proc. Nat. Acad. Sci. 45 (1959), 734-737,
859-862; Canadian J. Math. 12 (1960), 189-203]. Thus, after resisting attacks
for 180 years, Euler’s conjecture turned out to be almost entirely wrong.

Their discovery was made without computer help. But Parker worked for
UNIVAC, and he soon brought programming skills into the picture by solving the
problem of Paige and Tompkins in less than an hour, on a UNIVAC 1206 Military
Computer. [See Proc. Symp. Applied Math. 10 (1960), 71-83; 15 (1963), 73-81.)

