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Preface

Flex and bison are tools designed for writers of compilers and interpreters, although
they are also useful for many applications that will interest noncompiler writers. Any
application that looks for patterns in its input or has an input or command language is
a good candidate for flex and bison. Furthermore, they allow for rapid application
prototyping, easy modification, and simple maintenance of programs. To stimulate
your imagination, here are a few things people have used flex and bison, or their pred-
ecessors lex and yacc, to develop:

* The desktop calculator bc

* The tools eqn and pic, typesetting preprocessors for mathematical equations and
complex pictures

* Many other “domain-specific languages” targeted for a particular application

* PCC, the Portable C Compiler used with many Unix systems

* Flex itself

* A SQL database language translator

Scope of This Book

Chapter 1, Introducing Flex and Bison, gives an overview of how and why flex and bison
are used to create compilers and interpreters and demonstrates some simple applica-
tions including a calculator built in flex and bison. It also introduces basic terms we
use throughout the book.

Chapter 2, Using Flex, describes how to use flex. It develops flex applications that count
words in files, handle multiple and nested input files, and compute statistics on C
programs.

Chapter 3, Using Bison, gives a full example using flex and bison to develop a fully
functional desktop calculator with variables, procedures, loops, and conditional ex-
pressions. It shows the use of abstract syntax trees (ASTs), powerful and easy-to-use
data structures for representing parsed input.

Chapter 4, Parsing SQL, develops a parser for the MySQL dialect of the SQL relational
database language. The parser checks the syntax of SQL statements and translates them




into an internal form suitable for an interpreter. It shows the use of Reverse Polish
Notation (RPN), another powerful form used to represent and interpret parsed input.

Chapter 5, A Reference for Flex Specifications, and Chapter 6, A Reference for Bison
Specifications, provide detailed descriptions of the features and options available to flex
and bison programmers. These chapters and the two that follow provide technical
information for the now-experienced flex and bison programmer to use while devel-
oping flex and bison applications.

Chapter 7, Ambiguities and Conflicts, explains bison ambiguities and conflicts, which
are grammar problems that keep bison from creating a parser from a grammar. It then
develops methods that can be used to locate and correct such problems.

Chapter 8, Error Reporting and Recovery, discusses techniques that compiler or inter-
preter designers can use to locate, recognize, and report errors in the compiler input.

Chapter 9, Advanced Flex and Bison, covers reentrant scanners and parsers, Generalized
Left to Right (GLR) parsers that can handle grammars that regular bison parsers can’t,
and interfaces to C++.

The appendix provides the complete grammar and a cross-reference for the SQL parser
discussed in Chapter 4.

The glossary lists technical terms from language and compiler theory.

We presume you are familiar with C, because most examples are in C, flex, or bison,
with a few in C++ and the remainder in SQL or the special-purpose languages devel-
oped within the text.

Conventions Used in This Book

The following conventions are used in this book:

Italic
Used for new terms and concepts when they are introduced.
Constant Width '
¢ Used for program listings, as well as within paragraphs to refer to program elements
such as statements, classes, macros, states, rules, all code terms, and files and di-
rectories.
Constant Bold
Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
, mined by context.

is the shell prompt.
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surround optional elements in a description of program syntax. (Don’t type the
brackets themselves.)
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This icon indicates a warning or caution.

Getting Flex and Bison

Flex and bison are modern replacements for the classic lex and yacc that were both
developed at Bell Laboratories in the 1970s. Yacc was the first of the two, developed
by Stephen C. Johnson. Lex was designed by Mike Lesk and Eric Schmidt (the same
Eric Schmidt who now heads Google) to work with bison. Both lex and yacc have been
standard Unix utilities since Seventh Edition Unix in the 1970s.

This icon signifies a tip, suggestion, or general note.

The GNU Project of the Free Software Foundation distributes bison, a foreward-com-
patible replacement for yacc. It was originally written by Robert Corbett and Richard
Stallman. The bison manual is excellent, especially for referencing specific features.
Bison is included with all common distributions of BSD and Linux, but if you want the
most up-to-date version, its home page is:

http:/fwww.gnu.org/software/bison/

BSD and the GNU Project also distribute flex (Fast Lexical Analyzer Generator), “a
rewrite of lex intended to fix some of that tool’s many bugs and deficiencies.” Flex was
originally written by Jef Poskanzer; Vern Paxson and Van Jacobson have considerably
improved it. Common distributions of BSD and Linux include a copy of flex, but if you
want the latest version, it’s now hosted at SourceForge:

http://flex.sourceforge.net/

This Book's Example Files

The programs in this book are available online as:
ftp:t/ftp.iecc.com/publfile/flexbison.zip

They can be downloaded by any web browser or FTP client. The zip format file can be
decoded by the popular freeware unzip utility on Unix-ish and Linux systems or opened
as a compressed folder on Windows XP or newer.
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The examples in the book were all tested with flex version 2.5.35 and bison 2.4.1.

’

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Book Title by Some Author. Copyright
2008 O’Reilly Media, Inc., 978-0-596-xxxx-x.”

Ifyou feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Sa far"} When you see a Safari® Books Online icon on the cover of your favorite

wwowe  technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us

Despite all the help, errors remain the author’s responsibility. When you find some, or
if you have other comments, email them to fbook@iecc.com, being sure to include the
name of the book in the subject line to alert the spam filters that you are a real person
rather than a deceased kleptocrat from a developing country. Or drop by the Usenet
group comp. compilers where questions about compiler tools are always on topic.

You can also address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
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707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:/fwww.oreilly.com/catalog/9780596155971
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

hitp:/fwww.oreilly.com '
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CHAPTER 1

Introducing Flex and Bison

H

Flex and Bison are tools for building programs that handle structured input. They were
originally tools for building compilers, but they have proven to be useful in many other
areas. In this first chapter, we’ll start by looking at a little (but not too much) of the
theory behind them, and then we’ll dive into some examples of their use.

Lexical Analysis and.Parsing

The earliest compilers back in the 1950s used utterly ad hoc techniques to analyze the
syntax of the source code of programs they were compiling. During the 1960s, the field
got a lot of academic attention, and by the early 1970s, syntax analysis was a well-
understood field.

One of the key insights was to break the job into two parts: lexical analysis (also called
lexing or scanning) and syntax analysis (or parsing).

Roughly speaking, scanning divides the input into meaningful chunks, called tokens,
and parsing figures out how the tokens relate to each other. For example, consider this
snippet of C code:

alpha = beta + gamma ;
A scanner divides this into the tokens alpha, equal sign, beta, plus sign, gamma, and

semicolon. Then the parser determines that beta + gamma is an expression, and that the
expression is assigned to alpha.

Getting Flex and Bison

Most Linux and BSD systems come with flex and bison as part of the base system. If
your system doesn’t have them, or has out-of-date versions, they’re both easy to install.

Flex is a Sourceforge project, at http://flex.sourceforge.net/. The current version as of
early 2009 was 2.5.35. Changes from version to version are usually minor, so it’s not
essential to update your version if it’s close to .35, but some systems still ship with
version 2.5.4 or 2.5.4a, which is more than a decade old.




Bison is available from http://www.gnu.org/software/bison/. The current version as of
early 2009 was 2.4.1. Bison is under fairly active development, so it’s worth getting an
up-to-date version to see what’s new. Version 2.4 added support for parsers in Java,
for example. BSD users can generally install a current version of flex or bison using the
ports collection. Linux users may be able to firtd current RPMs. If not, flex and bison
both use the standard GNU build process, so to install them, download and unpack
the current flex and bison tarballs from the web sites, run ./configure and then make
to build each, then become superuser and make install to install them.

Flex and bison both depend on the GNU m4 macroprocessor. Linux and BSD should
all have m4, but in case they don’t, or they have an ancient version, the current GNU
m#4 is at http:/fwww.gnu.org/software/m4/.

For Windows users, both bison and flex are included in the Cygwin Linux emulation
environment available at htp://www.cygwin.com/. You can use the C or C++ code they
generate either with the Cygwin development tools or with native Windows develop-
ment tools.

Regular Expressions and Scanning |

Scanners generally work by looking for patterns of characters in the input. For example,
in a C program, an integer constant is a string of one or more digits, a variable name is
a letter followed by zero or more letters or digits, and the various operators are single
characters or pairs of characters. A straightforward way to describe these patterns is
regular expressions, often shortened to regex or regexp. These are the same kind of
patterns that the editors ed and vi and the search program egrep use to describe text to
search for. A flex program basically consists of a list of regexps with instructions about
what to do when the input matches any of them, known as actions. A flex-generated
scanner reads through its input, matching the input against all of the regexps and doing
the appropriate action on each match. Flex translates all of the regexps into an efficient
internal form that lets it match the input against all the patterns simultaneously, so it’s
just as fast for 100 patterns as for one.’

Our First Flex Program

Unix systems (by which I also mean Unix-ish systems including Linux and the BSDs)
come with a word count program, which reads through a file and reports the number
of lines, words, and characters in the file. Flex lets us write wc in a few dozen lines,
shown in Example 1-1.

* The internal form is known as a deterministic finite automation (DFA). Fortunately, the only thing you really
need to know about DFAs at this point is that they’re fast, and the speed is independent of the number or
complexity of the patterns.
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