JENhR)

B
2

flex5 bison |

s
i

O’REILLY"
%8 K'T iR

John Levine %

flex 5 bison =)
flex and bison

Jobn R. Levine

O'REILLY"

Beijing « Cambridge *+ Farnham « Koln + Sebastopol « Taipei * Tokyo

O’Reilly Media, Inc. A& by X & & RAL H AR

F K FHRA

BH#EmEE (CIP) &iE

flex 5 bison: #3x/ () F 3¢ (Levine, J.) .
BEHA . —FR: REKFEHR, 2010.1

FLFEXL: flex & bison

ISBN 978-7-5641-1932-4

I .F- 0.3 I.%kETAE-BFET-FEX
IV .TP311.56 .

h E R A< B 4508 CIP Big i+ (2009) 5205644 5

LA RAUREER A THEID
E 9. 10-2009-251 %=

©2009 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University
Press, 2009. Authorized reprint of the original English edition, 2009 O'Reilly Media, Inc., the
owner of all rights to publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
* X B W O'Reilly Media, Inc. # 3% 2009,

EXH gy hd kS b iR 2000, B L i ER A LR AHERNFR L
—— O'Reilly Media, Inc. 9% T,

BEIA, ABBEHT, KEGETEh & RLHFUETHATH,

flex &5 bison (FZENAR)

IR R TT: REEKFEHRE

o hb: FAREME%2E HR%: 210096
R AL &

WJ fit . htip://press.seu.edu.cn

B F#R . press@seu.edu.cn

Bil: i ENRIARA F

A, 787K x 980Kk 16 A
7. 18.5 Elgk

. 311 F=x

W 20104E 1 A% 1R

R 2010 4 1 B4 1 KENRI

‘5. ISBN 978-7-5641-1932-4

¥ . 1~1600 i}

#r: 46.00 T (M)

HoEIFNHIHID

SHEBEANERERE, FEESRERSWHEA. ©iF ($R). 025-83792328

Preface

Flex and bison are tools designed for writers of compilers and interpreters, although
they are also useful for many applications that will interest noncompiler writers. Any
application that looks for patterns in its input or has an input or command language is
a good candidate for flex and bison. Furthermore, they allow for rapid application
prototyping, easy modification, and simple maintenance of programs. To stimulate
your imagination, here are a few things people have used flex and bison, or their pred-
ecessors lex and yacc, to develop:

* The desktop calculator bc

* The tools eqn and pic, typesetting preprocessors for mathematical equations and
complex pictures

* Many other “domain-specific languages” targeted for a particular application

* PCC, the Portable C Compiler used with many Unix systems

* Flex itself

* A SQL database language translator

Scope of This Book

Chapter 1, Introducing Flex and Bison, gives an overview of how and why flex and bison
are used to create compilers and interpreters and demonstrates some simple applica-
tions including a calculator built in flex and bison. It also introduces basic terms we
use throughout the book.

Chapter 2, Using Flex, describes how to use flex. It develops flex applications that count
words in files, handle multiple and nested input files, and compute statistics on C
programs.

Chapter 3, Using Bison, gives a full example using flex and bison to develop a fully
functional desktop calculator with variables, procedures, loops, and conditional ex-
pressions. It shows the use of abstract syntax trees (ASTs), powerful and easy-to-use
data structures for representing parsed input.

Chapter 4, Parsing SQL, develops a parser for the MySQL dialect of the SQL relational
database language. The parser checks the syntax of SQL statements and translates them

into an internal form suitable for an interpreter. It shows the use of Reverse Polish
Notation (RPN), another powerful form used to represent and interpret parsed input.

Chapter 5, A Reference for Flex Specifications, and Chapter 6, A Reference for Bison
Specifications, provide detailed descriptions of the features and options available to flex
and bison programmers. These chapters and the two that follow provide technical
information for the now-experienced flex and bison programmer to use while devel-
oping flex and bison applications.

Chapter 7, Ambiguities and Conflicts, explains bison ambiguities and conflicts, which
are grammar problems that keep bison from creating a parser from a grammar. It then
develops methods that can be used to locate and correct such problems.

Chapter 8, Error Reporting and Recovery, discusses techniques that compiler or inter-
preter designers can use to locate, recognize, and report errors in the compiler input.

Chapter 9, Advanced Flex and Bison, covers reentrant scanners and parsers, Generalized
Left to Right (GLR) parsers that can handle grammars that regular bison parsers can’t,
and interfaces to C++.

The appendix provides the complete grammar and a cross-reference for the SQL parser
discussed in Chapter 4.

The glossary lists technical terms from language and compiler theory.

We presume you are familiar with C, because most examples are in C, flex, or bison,
with a few in C++ and the remainder in SQL or the special-purpose languages devel-
oped within the text.

Conventions Used in This Book

The following conventions are used in this book:

Italic
Used for new terms and concepts when they are introduced.
Constant Width '
¢ Used for program listings, as well as within paragraphs to refer to program elements
such as statements, classes, macros, states, rules, all code terms, and files and di-
rectories.
Constant Bold
Shows commands or other text that should be typed literally by the user.
Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
, mined by context.

is the shell prompt.

W | Preface

(]

surround optional elements in a description of program syntax. (Don’t type the
brackets themselves.)

o a
Lol
as
'&?‘ -
‘ A

"
-~

This icon indicates a warning or caution.

Getting Flex and Bison

Flex and bison are modern replacements for the classic lex and yacc that were both
developed at Bell Laboratories in the 1970s. Yacc was the first of the two, developed
by Stephen C. Johnson. Lex was designed by Mike Lesk and Eric Schmidt (the same
Eric Schmidt who now heads Google) to work with bison. Both lex and yacc have been
standard Unix utilities since Seventh Edition Unix in the 1970s.

This icon signifies a tip, suggestion, or general note.

The GNU Project of the Free Software Foundation distributes bison, a foreward-com-
patible replacement for yacc. It was originally written by Robert Corbett and Richard
Stallman. The bison manual is excellent, especially for referencing specific features.
Bison is included with all common distributions of BSD and Linux, but if you want the
most up-to-date version, its home page is:

http:/fwww.gnu.org/software/bison/

BSD and the GNU Project also distribute flex (Fast Lexical Analyzer Generator), “a
rewrite of lex intended to fix some of that tool’s many bugs and deficiencies.” Flex was
originally written by Jef Poskanzer; Vern Paxson and Van Jacobson have considerably
improved it. Common distributions of BSD and Linux include a copy of flex, but if you
want the latest version, it’s now hosted at SourceForge:

http://flex.sourceforge.net/

This Book's Example Files

The programs in this book are available online as:
ftp:t/ftp.iecc.com/publfile/flexbison.zip

They can be downloaded by any web browser or FTP client. The zip format file can be
decoded by the popular freeware unzip utility on Unix-ish and Linux systems or opened
as a compressed folder on Windows XP or newer.

Preface | xv

The examples in the book were all tested with flex version 2.5.35 and bison 2.4.1.

’

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Book Title by Some Author. Copyright
2008 O’Reilly Media, Inc., 978-0-596-xxxx-x.”

Ifyou feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online

Sa far"} When you see a Safari® Books Online icon on the cover of your favorite

wwowe technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://my.safaribooksonline.com.

How to Contact Us

Despite all the help, errors remain the author’s responsibility. When you find some, or
if you have other comments, email them to fbook@iecc.com, being sure to include the
name of the book in the subject line to alert the spam filters that you are a real person
rather than a deceased kleptocrat from a developing country. Or drop by the Usenet
group comp. compilers where questions about compiler tools are always on topic.

You can also address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

xi | Preface

707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http:/fwww.oreilly.com/catalog/9780596155971
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

hitp:/fwww.oreilly.com '

Acknowledgments

Every book is the work of many people, and this one is no exception. I thank Tony
Mason and Doug Brown, my coauthors of lex & yac, for permission to adapt parts of
that book. Many people provided useful comments on the draft manuscript, including
Lorenzo Bettini, Joel E. Denny, Danny Dubé, Ben Hanson, Jan Van Katwijk, Jeff Ken-
ton, Timothy Knox, Chris Morley, Ken Rose, and Juha Vihavainen. [particularly thank
Derek M. Jones, who provided a detailed page-by-page review in an unreasonably short
time. Simon St. Laurent, my long-suffering editor, as always shepherded the book
skillfully and without complaint through the editorial and production process.

Preface | xvii

Preface

1. Introducing Flex and Bison
Lexical Analysis and Parsing
Regular Expressions and Scanning

Our First Flex Program

Programs in Plain Flex

Putting Flex and Bison Together

The Scanner as Coroutine

Tokens and Values
Grammars and Parsing

BNF Grammars

Bison’s Rule Input Language

Compiling Flex and Bison Programs Together
Ambiguous Grammars: Not Quite
Adding a Few More Rules
Flex and Bison vs. Handwritten Scanners and Parsers
Exercises

Using FleX ..o e e e e

Regular Expressions
Regular Expression Examples
How Flex Handles Ambiguous Patterns
Context-Dependent Tokens
File I/O in Flex Scanners
Reading Several Files
The 1/O Structure of a Flex Scanner
Input to a Flex Scanner
Flex Scanner Output
Start States and Nested Input Files
Symbol Tables and a Concordance Generator
Managing Symbol Tables

--

19
19
21
22
22
23
24
25
26
27
28
32
32

Using a Symbol Table 35

C Language Cross-Reference 38
Exercises 45
3. UsingBisoncovvviiianiiiiiiaiiiiinne e reaeereeeceseerererennns 47
How a Bison Parser Matches Its Input 47
Shift/Reduce Parsing 48
What Bison’s LALR(1) Parser Cannot Parse 50

A Bison Parser 51
Abstract Syntax Trees 51
An Improved Calculator That Creates ASTs 52
Literal Character Tokens 54
Building the AST Calculator 57
Shift/Reduce Conflicts and Operator Precedence 57
When Not to Use Precedence Rules 60
An Advanced Calculator 61
Advanced Calculator Parser 64
Calculator Statement Syntax 65
Calculator Expression Syntax 66
Top-Level Calculator Grammar 67
Basic Parser Error Recovery 67
The Advanced Calculator Lexer 68
Reserved Words 69
Building and Interpreting ASTs 70
Evaluating Functions in the Calculator 76
User-Defined Functions 76
Using the Advanced Calculator 78
Exercises 79
4, ParsingSQLcooviieann, Ceerrrarieanean ceiaeas verees ceeeeene 81
A Quick Overview of SQL 81
Relational Databases 82

v Manipulating Relations 83
Three Ways to Use SQL 83
SQL to RPN 84
The Lexer 85
Scanning SQL Keywords 86
Scanning Numbers 90
Scanning Operators and Punctuation 91
Scanning Functions and Names 92
Comments and Miscellany 93
The Parser 94
The Top-Level Parsing Rules 96

vi | Table of Contents

SQL Expressions

Select Statements

Delete Statement

Insert and Replace Statements
Update Statement

Create Database

Create Table

User Variables

The Parser Routines
The Makefile for the SQL Parser
Exercises

A Reference for Flex Specifications

Structure of a Flex Specification
Definition Section
Rules Section
User Subroutines
BEGIN
C++ Scanners
Context Sensitivity
Left Context
Right Context
Definitions (Substitutions)
ECHO
Input Management
Stdio File Chaining
Input Buffers
Input from Strings
File Nesting
input()
YY_INPUT
Flex Library
Interactive and Batch Scanners
Line Numbers and yylineno
Literal Block
Multiple Lexers in One Program
Combined Lexers
Multiple Lexers
Options When Building a Scanner
Portability of Flex Lexers
Porting Generated C Lexers
Reentrant Scanners
Extra Data for Reentrant Scanners

96
101
106
107
110
110
111
114
115
116
117

........................ 119

119
119
119
120
120
121
121
121
122
122
123
123
123
123
124
124
124
125
125
126
126
126
127
127
128
128
129
129
130
130

Table of Contents | vii

Access to Reentrant Scanner Data 131

Reentrant Scanners, Nested Files, and Multiple Scanners 131
Using Reentrant Scanners with Bison 132
Regular Expression Syntax 132
Metacharacters 132
REJECT 135
Returning Values from yylex() 135
Start States 135
unput() 137
yyinput() yyunput() 137
yyleng 137
yyless() 137
yylex() and YY_DECL 138
yymore() 138
yyrestart() 139
yy_scan_string and yy_scan_buffer 139
YY_USER_ACTION 139
yywrap() 139
6. A Reference for Bison Specificationscoiiiiiiiiiiiin, 141
Structure of a Bison Grammar 141
Symbols 141
Definition Section 142
Rules Section 142
User Subroutines Section 142
Actions 142
Embedded Actions 143
Symbol Types for Embedded Actions 144
Ambiguity and Conflicts 144
Types of Conflicts 144
Shift/Reduce Conlflicts 144
Reduce/Reduce Conflicts 145

. %expect ' 145
GLR Parsers 145
Bugs in Bison Programs 146
Infinite Recursion 146
Interchanging Precedence 146
Embedded Actions 146
C++ Parsers 147
%code Blocks 147
End Marker 147
Error Token and Error Recovery 147
%destructor 148

viii | Table of Contents

Inherited Attributes ($0)
Symbol Types for Inherited Attributes
%initial-action
Lexical Feedback
Literal Block

Literal Tokens
Locations
%parse-param
Portability of Bison Parsers
Porting Bison Grammars
Porting Generated C Parsers
Libraries
Character Codes
Precedence and Associativity Declarations
Precedence
Associativity
Precedence Declarations
Using Precedence and Associativity to Resolve Conlflicts
Typical Uses of Precedence
Recursive Rules
Left and Right Recursion
Rules
Special Characters
%start Declaration
Symbol Values
Declaring Symbol Types
Explicit Symbol Types
Tokens
Token Numbers
Token Values
%type Declaration
%union Declaration
Variant and Multiple Grammars
Combined Parsers
Multiple Parsers
Using %name-prefix or the -p Flag
Lexers for Multiple Parsers
Pure Parsers
y.output Files
Bison Library
main()
yyerror()
YYABORT

148
149
149
150
151
151
152
152
153
153
153
153

'153
154
154
154
154
155
155
155
156
157
158
159
160
160
160
161
161
161
162
163
163
163
165
165
165
165
166
167
167
167
168

Table of Contents | ix

YYACCEPT 168
YYBACKUP 168
yyclearin 169
yydebug and YYDEBUG _ 169

YYDEBUG 169
yydebug 169
yyerrok 169
YYERROR 170
yyerror() 170
yyparse() 171
YYRECOVERING() 171
7. Ambiguities and Conflicts U PR 173
The Pointer Model and Conflicts 173
Kinds of Conflicts 175
Parser States 176
Contents of name.output 178
Reduce/Reduce Conflicts 178
Shift/Reduce Contflicts 180
Review of Conflicts in name.output 182
Common Examples of Conflicts 183
Expression Grammars 183
IF/THEN/ELSE 185
Nested List Grammar 186
How Do You Fix the Conflict? 187
[F/THEN/ELSE (Shift/Reduce) 188
Loop Within a Loop (Shift/Reduce) 190
Expression Precedence (Shift/Reduce) 191
Limited Lookahead (Shift/Reduce or Reduce/Reduce) 191
Overlap of Alternatives (Reduce/Reduce) 192
Summary 194
Exercises , 194

t
8. ErrorReporting and ReCOVENYouvvverrernrrmnanemnerenenennneneees 197
Error Reporting 197
Locations 199
Adding Locations to the Parser 200
Adding Locations to the Lexer 201
More Sophisticated Locations with Filenames 202
’ Error Recovery 204
i Bison Error Recovery 205
i Freeing Discarded Symbols 206
Error Recovery in Interactive Parsers 206

% | TableofContents

Where to Put Error Tokens 207
Compiler Error Recovery 208
Exercises 208

9, Advanced FlexandBison e e rierreue et e ananaes 209
Pure Scanners and Parsers 209

Pure Scanners in Flex 210

Pure Parsers in Bison 212

Using Pure Scanners and Parsers Together 213

A Reentrant Calculator 214
GLR Parsing 230

GLR Version of the SQL Parser 231
CH++ Parsers 234

A C++ Calculator 235

C++ Parser Naming 235

A C++ Parser 236

‘Interfacing a Scanner with a C++ Parser 239

Should You Write Your Parser in C++ ? 241
Exercises 241

Appendix: SQL Parser Grammar and Cross-Referencecooiivvnnnnns 243
GIOSSAIY « v vveverinneneeteritineerieiienasserararettai i 259
EX vt etete e teteeeiaetteietereraretiaaensateatatereerin i tnrraees 263

Table of Contents | xi

CHAPTER 1

Introducing Flex and Bison

H

Flex and Bison are tools for building programs that handle structured input. They were
originally tools for building compilers, but they have proven to be useful in many other
areas. In this first chapter, we’ll start by looking at a little (but not too much) of the
theory behind them, and then we’ll dive into some examples of their use.

Lexical Analysis and.Parsing

The earliest compilers back in the 1950s used utterly ad hoc techniques to analyze the
syntax of the source code of programs they were compiling. During the 1960s, the field
got a lot of academic attention, and by the early 1970s, syntax analysis was a well-
understood field.

One of the key insights was to break the job into two parts: lexical analysis (also called
lexing or scanning) and syntax analysis (or parsing).

Roughly speaking, scanning divides the input into meaningful chunks, called tokens,
and parsing figures out how the tokens relate to each other. For example, consider this
snippet of C code:

alpha = beta + gamma ;
A scanner divides this into the tokens alpha, equal sign, beta, plus sign, gamma, and

semicolon. Then the parser determines that beta + gamma is an expression, and that the
expression is assigned to alpha.

Getting Flex and Bison

Most Linux and BSD systems come with flex and bison as part of the base system. If
your system doesn’t have them, or has out-of-date versions, they’re both easy to install.

Flex is a Sourceforge project, at http://flex.sourceforge.net/. The current version as of
early 2009 was 2.5.35. Changes from version to version are usually minor, so it’s not
essential to update your version if it’s close to .35, but some systems still ship with
version 2.5.4 or 2.5.4a, which is more than a decade old.

Bison is available from http://www.gnu.org/software/bison/. The current version as of
early 2009 was 2.4.1. Bison is under fairly active development, so it’s worth getting an
up-to-date version to see what’s new. Version 2.4 added support for parsers in Java,
for example. BSD users can generally install a current version of flex or bison using the
ports collection. Linux users may be able to firtd current RPMs. If not, flex and bison
both use the standard GNU build process, so to install them, download and unpack
the current flex and bison tarballs from the web sites, run ./configure and then make
to build each, then become superuser and make install to install them.

Flex and bison both depend on the GNU m4 macroprocessor. Linux and BSD should
all have m4, but in case they don’t, or they have an ancient version, the current GNU
m#4 is at http:/fwww.gnu.org/software/m4/.

For Windows users, both bison and flex are included in the Cygwin Linux emulation
environment available at htp://www.cygwin.com/. You can use the C or C++ code they
generate either with the Cygwin development tools or with native Windows develop-
ment tools.

Regular Expressions and Scanning |

Scanners generally work by looking for patterns of characters in the input. For example,
in a C program, an integer constant is a string of one or more digits, a variable name is
a letter followed by zero or more letters or digits, and the various operators are single
characters or pairs of characters. A straightforward way to describe these patterns is
regular expressions, often shortened to regex or regexp. These are the same kind of
patterns that the editors ed and vi and the search program egrep use to describe text to
search for. A flex program basically consists of a list of regexps with instructions about
what to do when the input matches any of them, known as actions. A flex-generated
scanner reads through its input, matching the input against all of the regexps and doing
the appropriate action on each match. Flex translates all of the regexps into an efficient
internal form that lets it match the input against all the patterns simultaneously, so it’s
just as fast for 100 patterns as for one.’

Our First Flex Program

Unix systems (by which I also mean Unix-ish systems including Linux and the BSDs)
come with a word count program, which reads through a file and reports the number
of lines, words, and characters in the file. Flex lets us write wc in a few dozen lines,
shown in Example 1-1.

* The internal form is known as a deterministic finite automation (DFA). Fortunately, the only thing you really
need to know about DFAs at this point is that they’re fast, and the speed is independent of the number or
complexity of the patterns.

2 | Chapter1: introducing Fiex and Bison

