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To the memory of my father



This book provides an introduction to the concepts which un-
derlie the modern understanding of the behaviour of complicated
physical systems which exhibit the property of scale invariance or
self-similarity. This is most clearly illustrated in materials, such as
magnets or fluids, in the vicinity of a second order phase transi-
tion. The theoretical framework for understanding these phenom-
ena, known as the renormalization group, first arose in the late
1960s and has evolved into a common language used by workers
in such diverse fields as particle physics, cosmology, neural net-
works and biophysics, as well as the more conventional aspects of
condensed matter physics. '

Beginning with a brief review of phase transitions in simple sys-
tems and of mean field theory, the text then goes on to introduce
the core ideas of the renormalization group. Following chapters
cover phase diagrams, fixed points, cross-over behaviour, finite-size
scaling, perturbative renormalization methods, low-dimensional
systems, surface critical behaviour, random systems, percolation,
polymer statistics, critical dynamics and conformal symmetry.
The book closes with an appendix on Gaussian integration, a
selected bibliography, and a detailed index. Many problems are
included.

The emphasis throughout is on providing an elementary and
intuitive approach. In particular, the perturbative method intro-
duced leads, among other applications, to a simple derivation of
the epsilon expansion in which all the actual calculations (at least
to lowest order) reduce to simple counting, avoiding the need for
Feynman diagrams.



Preface

Scaling concepts play a central role in the analysis of the ever
more complex systems which nowadays are the focus of much at-
tention in the physical sciences. Whether these problems relate to
the very large scale structure of the universe, to the complicated
forms of everyday macroscopic objects, or to the behaviour of the
interactions between the fundamental constituents of matter at
very short distances, they all have the common feature of pos-
sessing large numbers of degrees of freedom which interact with
each other in a complicated and highly non-linear fashion, often
according to laws which are only poorly understood. Yet it is often
possible to make progress in understanding such problems by iso-
lating a few relevant variables which characterise the behaviour of
these systems on a particular length or time scale, and postulating
simple scaling relations between them. These may serve to unify
sets of experimental and numerical data taken under widely dif-
fering conditions, a phenomenon called universality. When there
is only a single independent variable, these relations often take
the form of power laws, with exponents which do not appear to
be simple rational numbers yet are, once again, universal.

The existence of such scaling behaviour may often be explained
through a framework of theoretical ideas loosely grouped under
the term renormalization. Roughly speaking, this describes how
the parameters specifying the system must be adjusted, under pu-
tative changes of the underlying dynamics, in such a way as not
to modify the measurable properties on the length or time scales
of interest. The simple postulate of the existence of a fixed point
of these renormalization flows is then sufficient to explain quali-
tatively the appearance of universal scaling laws. Unfortunately,
for most examples of complex systems, such a renormalization
approach has not, as yet, been put on a systematic basis starting
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from the underlying microscopic dynamics. In trying to under-
stand scaling arguments applied to such problems it is often diffi-
cult, especially for newcomers, to understand why certain variables
should be neglected while others are retained in such scaling de:
scriptions, and why in some cases power law relations should hold
while they fail in others.

Fortunately, there is a class of physical problems within which
the concepts of scaling and renormalization may be derived sys-
tematically, and which therefore have become a paradigm for the
whole approach. These concern equilibrium critical behaviour. The
systems which exhibit such behaviour are governed by the simple
and well understood laws of statistical mechanics. Indeed, along
with the high energy behaviour of quantum field theories, this was
the area of physics in which the concepts of renormalization were
first formulated. Although the subject of equilibrium critical be-
haviour is, apart from a few unsolved problems, no longer of the
greatest topical theoretical or experimental interest, its study is
nonetheless important in providing a solid grounding to anyone
who wishes to go on to attempt to understand scaling and renor-
malization in more esoteric systems. Yet the typical student in
condensed matter theory faces a problem in trying to accomplish
this. Historically, the subjects of renormalization in quantum field
theory (as applied to particle physics) and in equilibrium critical
behaviour have developed in parallel. This is no coincidence — the
two sets of problems have, mathematically, a great deal in com-
mon, and, indeed, the most systematic formulation of the subject
relies heavily on the property of renormalizability in quantum field
theory. However, much of the qualitative structure of renormaliza-
tion may be introduced through the alternative real space meth-
ods which are both simple and appealing. But students who learn
this approach, and then wish to go further in existing accounts of
the subject, must make a complete change of gears to momentum
space methods which require a great deal of investment of time
and effort in digesting the whole formalism of Feynman diagrams
and renormalization theory. As a result, the study of the subject
rapidly becomes overladen with formalism, and the student, if he
or she is lucky, has just about time to learn how to calculate the
critical exponents of the Ising model in 4 — e dimensions before the
course comes to an end. The average student thereby often misses
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out on any account of the tremendously wide range of problems,
even within critical behaviour, on which these methods may be.
brought to bear.

In my opinion, these field theoretic details are appropriate only
for the relatively small number of students who wish to go on and
apply these methods to particle physics, or for those who really
need to compute critical exponents to O(e?) and higher. For the
majority, whose goal is to understand how scaling and renormal-
ization ideas might be applied to the rich variety of complex phe-
nomena apparent in many other branches of the physical sciences,
the main object is to learn the concepts, and the best way to do
this is by covering as many examples as possible. This small book
was written with this goal in mind. It is, in fact, based on a set of
lectures which were given, in various incarnations, to physics grad-
uate students at Santa Barbara and Oxford. A significant fraction
of the audience consisted of students planning to do experimental
rather than theoretical research.

I have assumed that the reader has already had a basic course
in statistical mechanics, and, indeed, has had some exposure to
critical phenomena, a subject which is, nowadays, often discussed
in such courses. However, for completeness, the basic phenomena
and some simple models are recalled in the first chapter. Next
comes a discussion of the ‘classical’ approach to critical behaviour
through mean field theory, before the renormalization group idea
is introduced. As mentioned above, the simplest conceptual route
to renormalization concepts is through real space methods, and
I have chosen this approach. At this level, all of the qualitative
properties of scaling and universality may then be discussed.

However, it is also important that the student understand how
quantitative methods, such as the e-expansion, come about. In
this book I describe an approach, which is certainly not new but
deserves to become better known, by which at least the first or-
der perturbative renormalization group equations may be derived
from a simple continuum real space approach, thus linking up
directly with the earlier more intuitive considerations. It relies
on the operator product expansion of field theory, an impressive
sounding name for something which is basically very intuitive and
simple, and easy to calculate with in lowest order. As a result, the
O(e) results for the critical exponents emerge as a consequence of
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elementary combinatorics, with no Feynman diagrams required at
all! This approach also lays stress on the modern idea of scaling
‘operators’ and their associated scaling dimensions as being the
central objects of attention, rather than derived quantities like
the traditionally defined critical exponents.

Although I have deliberately tried to avoid couching the dis-
cussion in the language of quantum field theory, a few of its el-
ementary results, particularly those of Gaussian integration and
the combinatorial version of Wick’s theorem, are nonetheless re-
quired. The details of these are summarised in a brief Appendix,
for readers unfamiliar with these simple formulae.

After this, the book embarks on a tour of many of the impor-
tant applications of renormalization group to critical phenomena.
After a few simple generalisations of the Ising magnet in 4 — ¢ di-
mensions, we descend to the neighbourhood of two dimensions.and
show how the same perturbative renormalization group methods
which gave us the e-expansion may be applied to the famous ex-
amples of the XY model and other systems with continuous sym-
metries. Then come accounts of the application of similar meth-
ods to critical behaviour near surfaces, to systems with quenched
random impurities, and to the configurational statistics of large
polymers in solution. These are all problems in equilibrium criti-
cal behaviour, but the next chapter brings in the dynamics. This
is a tremendously rich subject, indeed one which deserves a whole
book in itself at this level, and it is therefore impossible to do
it justice in a single chapter. However, I have tried to include a
number of examples apart from the standard ones, including in
particular directed percolation, an example from the rapidly ex-
panding subject of dynamic critical behaviour in systems far from
equilibrium. Finally, the tour ends with an elementary account of
some of the recent developments in the application of the ideas of
conformal symmetry to equilibrium critical behaviour. The non-
mathematical reader may find this section slightly harder going
than the earlier chapters, although all that is in fact required is a
basic knowledge of tensor calculus and complex analysis.

Unfortunately, many important examples of scaling in statis-
tical physics have been omitted in this survey, due to reasons of
lack of space and/or expertise on the part of the author. In par-
ticular, I would have liked to have spent time on the problems of
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fluctuating interfaces and of spin glasses, where the concepts of
scaling are amply illustrated, but these subjects are too compli-
cated for inclusion in a single course. Similarly, the modern ap-
proach to localisation of waves and electrons in random systems is
replete with scaling arguments, but it too requires too extensive
an introduction. The dynamics of phase ordering following a rapid
temperature quench is another fascinating related subject where
scaling arguments play a central role, but for which, as yet, no
systematic renormalization approach has been formulated.

A more profound apology is required for the lack of any detailed
reference to comparison with experimental data. I hope that this
does not create the wrong impression. The subject of critical phe-
nomena is one which is, ultimately, driven by observation and
experiment, and it is important that all theorists continue to bear
this in mind. However, the basic experiments which established
the phenomena of scaling and universality in critical behaviour
were performed some time ago, and their results are by now ade-
quately summarised in a number of standard references. It is not
the purpose of this book to make detailed comparison with ex-
perimental results on particular systems, but rather to emphasise
the generality of the principles involved. In this sense the current
status of the theory is akin to that of quantum mechanics, where,
in similarly introductory texts, it is considered adequate nowa-
days to illustrate the theoretical principles with applications to
simple and rather idealised systems, rather than by comparison
with detailed experimental data. ’

Since this is an introductory account, I have not included bib-
liographic references in the text. Rather, [ have provided a list of
selected sources of further reading at the end. I have also included
a number of exercises, the aim of which is to lead the inquisitive
reader into further examples and extensions of the ideas discussed
in the text.

I thank my graduate students and colleagues at Santa Barbara
and Oxford who have helped me formulate the material of this
book over the years. I am particularly grateful to Benjamin Lee
for a careful reading of the manuscript, and to Reinhard Noack
for helping produce the Ising model pictures in Chapter 3.
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1
Phase transitions in simple systems

Take a large piece of material and measure some of its macro-
scopic properties, for example its density, compressibility or mag-
netisation. Now divide it into two roughly equal halves, keeping
the external variables like pressure and temperature the same.
The macroscopic properties of each piece will then be the same
as those of the whole. The same holds true if the process is re-
peated. But eventually, after many iterations, something different
must happen, because we know that matter is made up of atoms
and molecules whose individual properties are quite different from
those of the matter which they constitute. The length scale at
which the overall properties of the pieces begin to differ markedly
from those of the original gives a measure of what is termed the
correlation length of the material. It is the distance over which
the fluctuations of the microscopic degrees of freedom (the posi-
tions of the atoms and suchlike) are significantly correlated with
each other. The fluctuations in two parts of the material much fur-
ther apart than the correlation length are effectively disconnected
from each other. Therefore it makes no appreciable difference to
the macroscopic properties if the connection is completely severed.

Usually the correlation length is of the order of a few inter-
atomic spacings. This means that we may consider really quite
small collections of atoms to get a very good idea of the macro-
scopic behaviour of the material. (This statement needs qualifi-
cation. In reality, small clusters of atoms will exhibit very strong
surface effects which may be quite different from, and dominate,
the bulk behaviour. However, since this is only a thought experi-
ment, we may imagine employing the theoretician’s device of peri-
odic boundary conditions, thereby eliminating them.) However,
the actual value of the correlation length depends on the external
conditions determining the state of the system, such as the temp-



