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Preface

This textbook covers the basic properties of elliptic curves and modular
forms, with emphasis on certain connections with number theory. The ancient
“‘congruent number problem™ is the central motivating example for most of
the book.

My purpose is to make the subject accessible to those who find it hard to
read more advanced or more algebraically oriented treatments. At the same
time I want to introduce topics which are at the forefront of current research.
Down-to-earth examples are given in the text and exercises, with the aim of
making the material readable and interesting to mathematicians in fields far
removed from the subject of the book.

With numerous exercises (and answers) included, the textbook is also
intended for graduate students who have completed the standard first-year
courses in real and complex analysis and algebra. Such students would learn
applications of techniques from those courses, thereby solidifying their under-
standing of some basic tools used throughout mathematics. Graduate stu-
dents wanting to work in number theory or algebraic geometry would get a
motivational, example-oriented introduction. In addition, advanced under-
graduates could use the book for independent study projects, senior theses,
and seminar work.

This book grew out of lecture notes for a course I gave at the University of
Washington in 1981-1982, and from a series of lectures at the Hanoi
Mathematical Institute in April, 1983. I would like to thank the auditors of
both courses for their interest and suggestions. My special gratitude is due to
Gary Nelson for his thorough reading of the manuscript and his detailed
comments and corrections. I would also like to thank Professors J. Buhler, B.
Mazur, B. H. Gross, and Huynh Mui for their interest, advice and
encouragement.



vi Preface

The frontispiece was drawn by Professor A. T. Fomenko of Moscow State
University to illustrate the theme of this book. It depicts the family of elliptic
curves (tori) that arises in the congruent number problem. The elliptic curve
corresponding to a natural number » has branch points at 0, co,nand —n. In
the drawing we see how the elliptic curves interlock and deform as the branch
points +» go to infinity.

Note: References are given in the form [Author year]; in case of multiple

works by the same author in the same year, we use a, b, ... after the date to
indicate the order in which they are listed in the Bibliography.

Seattle, Washington NEaL KosLiTZ
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CHAPTER 1

From Congruent Numbers to Elliptic
Curves

The theory of elliptic curves and modular forms is one subject where the
most diverse branches of mathematics come together: complex analysis,
algebraic geometry, representation theory, number theory. While our point
of view will be number theoretic, we shall find ourselves using the type of
techniques that one learns in basic courses in complex variables, real var-
iables, and algebra. A well-known feature of number theory is the abundance
of conjectures and theorems whose statements are accessible to high school
students but whose proofs either are unknown or, in some cases, are the
culmination of decades of research using some of the most powerful tools
of twentieth century mathematics.

We shall motivate our choice of topics by one such theorem: an elegant
characterization of so-called “congruent numbers” that was recently proved
by J. Tunnell [Tunnell 1983]. A few of the proofs of necessary results go
beyond our scope, but many of the ingredients in the proof of Tunnell’s
theorem will be developed in complete detail.

Tunnell’s theorem gives an almost complete answer to an ancient problem:
find a simple test to determine whether or not a given integer » is the area
of some right triangle all of whose sides are rational numbers. A natural
number 7 is called “congruent” if there exists a right triangle with all three
sides rational and area n. For example, 6 is the area of the 3—4-5 right
triangle, and so is a congruent number.

Right triangles whose sides are integers X, Y, Z (a “‘Pythagorean triple™)
were studied in ancient Greece by Pythagoras, Euclid, Diophantus, and
others. Their central discovery was that there is an easy way to generate all
such triangles. Namely, take any two positive integers a and b with a > b,
draw the line in the uv-plane through the point (— 1, 0) with slope b/a. Let
(1, v) be the second point of intersection of this line with the unit circle
(see Fig. I.1). It is not hard to show that
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Figure 1.1

_at=b p = 2ab
_az+b2’ —a2+b2'

Then the integers X = a® — b, Y = 2ab, Z = a® + b? are the sides of a
right triangle; the fact that X2 + Y2 = Z?2 follows because #* + v? = 1. By
letting a and b range through all positive integers with a > b, one gets all
possible Pythagorean triples (see Problem 1 below).

Although the problem of studying numbers n which occur as areas of
rational right triangles was of interest to the Greeks in special cases, it
seems that the congruent number problem was first discussed systematically
by Arab scholars of the tenth century. (For a detailed history of the problem
of determining which numbers are ‘“‘congruent”, see [L. E. Dickson 1952,
Ch. XVI]; see also [Guy 1981, Section D27].) The Arab investigators
preferred to rephrase the problem in the following equivalent form: given n,
can one find a rational number x such that x? + » and x% — n are both
squares of rational numbers? (The equivalence of these two forms of the
congruent number problem was known to the Greeks and to the Arabs; for
a proof of this elementary fact, see Proposition 1 below.)

Since that time, some well-known mathematicians have devoted consid-
erable energy to special cases of the congruent number problem. For
example, Euler was the first to show that n = 7 is a congruent number.
Fermat showed that n =1 is not; this result is essentially equivalent to
Fermat’s Last Theorem for the exponent 4 (i.e., the fact that X* + Y* = Z*
has no nontrivial integer solutions).

It eventually became known that the numbers 1, 2, 3, 4 are not congruent
numbers, but 5, 6, 7 are. However, it looked hopeless to find a straight-
forward criterion to tell whether or not a given n is congruent. A major
advance in the twentieth century was to place this problem in the context of
the arithmetic theory of elliptic curves. It was in this context that Tunnell
was able to prove his remarkable theorem.

u



§1. Congruent numbers 3

Here is part of what Tunnell's theorem says (the full statement will be
given later):

Theorem (Tunnell). Let n be an odd squarefree natural number. Consider the
two conditions:

(A) nis congruent ;
(B) the number of triples of integers (x, y, z) satisfying 2x* + y* + 8z =n
is equal to twice the number of triples satisfying 2x* + y> + 32z =n,

Then (A) implies (B); and, if a weak form of the so-called Birch—Swinnerton-
Dyer conjecture is true, then (B) also implies (A).

The central concepts in the proof of Tunnell's theorem—the Hasse—Weil
L-function of an elliptic curve, the Birch—Swinnerton-Dyer conjecture,
modular forms of half integer weight—will be discussed in later chapters.
Our concern in this chapter will be to establish the connection between
congruent numbers and a certain family of elliptic curves, in the process
giving the definition and some basic properties of elliptic curves.

A

§1. Congruent numbers

Let us first make a more general definition of a congruent number. A
positive rational number re @ is called a “congruent number” if it is the
area of some right triangle with rational sides. Suppose r is congruent, and
X, Y, ZeQ are the sides of a triangle with area r. For any nonzero re Q we
can find some se@ such that s?r is a squarefree integer. But the triangle
with sides sX, sY, sZ has area s?r. Thus, without loss of generality we may
assume that r = n is a squarefree natural number. Expressed in group
language, we can say that whether or not a number r in the multiplicative
group Q* of positive rational numbers has the congruent property depends
only on its coset modulo the subgroup (@*)?* consisting of the squares of
rational numbers; and each coset in @*/(Q")? contains a unique squarefree
natural number r = n. In what follows, when speaking of congruent numbers,
we shall always assume that the number is a squarefree positive integer.

Notice that the definition of a congruent number does not require the
sides of the triangle to be integral, only rational. While n» = 6 is the smallest
possible area of a right triangle with integer sides, one can find right triangles
with rational sides having area n = 5. The right triangle with sides 1%, 6%, 62
issuch a triangle (see Fig. I.2). It turns out that n = 5 is the smallest congruent
number (recall that we are using “‘congruent number” to mean ‘‘congruent
squarefree natural number”).

There is a simple algorithm using Pythagorean triples (see the problems
below) that will eventually list all congruent numbers. Unfortunately, given
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Figure 1.2

n, one cannot tell how long one must wait to get a if it is congruent; thus,
if n has not appeared we do not know whether this means that » is not a
congruent number or that we have simply not waited long enough. From a
practical point of view, the beauty of Tunnell’s theorem is that his condition
(B) can be easily and rapidly verified by an effective algorithm. Thus, his
theorem almost settles the congruent number problem, i.e., the problem of
finding a verifiable criterion for whether a given n is congruent. We must
say “‘almost settles” because in one direction the criterion is only known to
work in all cases if one assumes a conjecture about elliptic curves.

Now suppose that X, Y, Z are the sides of a right triangle with area n.
This means: X2+ Y2 =2Z? and 1XY = n. Thus, algebraically speaking,
the condition that n be a congruent number says that these two equations
have a simultaneous solution X, Y, Ze Q. In the proposition that follows,
we derive an alternate condition for # to be a congruent number. In listing
triangles with sides X, Y, Z, we shall not want to list X, ¥, Zand ¥, X, Z
separately. So for now let us fix the ordering by requiring that X < Y < Z
(Z is the hypotenuse).

Proposition 1. Let n be a fixed squarefree positive integer. Let X, Y, Z, x
always denote rational numbers, with X < Y < Z. There is a one-to-one
correspondence between right triangles with legs X and Y, hypotenuse Z, and
area n,; and numbers x for which x, x + n, and x — n are each the square of a
rational number. The correspondence is:

X, Y,Z-x=(Z2)?

xo>X=x+n—Jx—n Y=\ x+n+Jx—n Z=2x

In particular, n is a congruent number if and only if there exists x such that x,
x + n, and x — n are squares of rational numbers.

Proor. First suppose that X, Y, Z is a triple with the desired properties:
X?+ Y?=Z2 1XY = n. If we add or subtract four times the second equa-
tion from the first, we obtain: (X + ¥)? = Z? + 4n. If we then divide both
sides by four, we see that x = (Z/2)? has the property that the numbers
x t n are the squares of (X + Y)/2. Conversely, given x with the desired
properties, it is easy to see that the three positive rationalnumbers X < ¥ < Z
given by the formulas in the proposition satisfy: XY = 2n, and X% + Y2 =
4x = Z*. Finally, to establish the one-to-one correspondence, it only remains
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to verify that no two distinct triples X, Y, Z can lead to the same x. We leave
this to the reader (see the problems below). o

PROBLEMS

I.

6803298487826435051217540

Recall that a Pythagorean triple is a solution (X, Y, Z) in positive integers to the’
equation X2 + Y2 = Z2 It is called “primitive” if X, ¥, Z have no common factor.
Suppose that a > b are two relatively prime positive integers, not both odd. Show
that X = a? — b2, Y = 2ab, Z = a* + b? form a primitive Pythagorean triple, and
that all primitive Pythagorean triples are obtained in this way.

. Use Problem 1 to write a flowchart for an algorithm that lists all squarefree con-

gruent numbers (of course, not in increasing order). List the first twelve distinct
congruent numbers your algorithm gives. Note that there is no way of knowing
when a given congruent number n will appear in the list. For example, 101 is a
congruent number, but the first Pythagorean triple which leads to an area s* 101
involves twenty-two-digit numbers (see [Guy 1981, p. 106]). One hundred fifty-seven
is even worse (see Fig. 1.3). One cannot use this algorithm to establish that some n
is not a congruent number. Technically, it is not a real algorithm, only a *‘semi-
algorithm™.

. (a) Show that if | were a congruent number, then the equation x* — y* = u? would

have an integer solution with x odd.

"(b) Prove that 1 is not a congruent number. (Note: A consequence is Fermat’s

Last Theorem for the exponent 4.)

. Finish the proof of Proposition 1 by showing that no two triples X, Y, -Z can lead

to the same x.

. (a) Find xe(@")? such that x + 5¢(Q*)%

(b) Find xe(Q"*)? such that x + 6(Q")2.

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

411340519227716149383203

411340519227716149383203
21666555693714761309610

Figure 1.3. The Simplest Rational Right Triangle with Area 157 (computed by D.
Zagier).
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(c) Find two values xe(Q*)? such that x + 210e(Q@*)2. At the end of this chapter
we shall prove that if there is one such x, then there are infinitely many. Equiva-
lently (by Proposition 1), if there exists one right triangle with rational sides
and area n, then there exist infinitely many.

6. (a) Show that condition (B) in Tunnell’s theorem is equivalent to the condition that
the number of ways » can be written in the form 2x? + y? + 822 with x, y, z
integers and z odd, be equal to the number of ways # can be written in this form
with z even. ’

(b) Write a flowchart for an algorithm that tests condition (B) in Tunnell’s theorem
for a given n.

7. (a) Prove that condition (B) in Tunnell’s theorem always holds if » is congruent
to 5or 7 modulo 8. .
(b) Check condition (B) for all squarefree n= 1 or 3 {mod 8) until you find such
an n for which condition (B) holds.
(¢) By Tunnell's theorem, the number you found in part (b) should be the smallest
congruent number congruent to 1 or 3 modulo 8. Use the algorithm in Problem 2

to find a right triangle with rational sides and area equal to the number you
found in part (b).

§2. A certain cubic equation

In this section we find yet another equivalent characterization of congruent
numbers.

In the proof of Proposition 1 in the last section, we arrived at the equations
(X £ Y){2)* =(Z/2)? + n whenever X, Y, Z are the sides of a triangle with
area n. If we multiply together these two equations, we obtain ((X? — Y?2)/4)?
= (Z/2)* — n®. This shows that the equation u* — n® = v? has a rational
solution, namely, ¥ = Z/2 and v = (X2 — ¥?)/4. We next multiply through
by u? to obtain u® — n%u® = (uv)?. If we set x = u* = (Z/2)* (this is the same
x as in Proposition 1) and further set y = up = (X2 — Y?)Z/8, then we have
a pair of rational numbers (x, p) satisfying the cubic equation:

v =x3—n’x.

Thus, given a right triangle with rational sides X, Y, Z and area n, we
obtain a point (x, y) in the xy-plane having rational coordinates and lying
on the curve y* = x® — n?x. Conversely, can we say that any point (x, y)
with x, y e Q@ which lies on the cubic curve must necessarily come from such
a right triangle? Obviously not, because in the first place the x-coordinate
x = u? = (Z/2)? must lie in (@")? if the point (x, y) can be obtained as in
the last paragraph. In the second place, we can see that the x-coordinate of
such a point must have its denominator divisible by 2. To see this, notice that
the triangle X, Y, Z can be obtained starting with a primitive Pythagorean
triple X', ¥, Z’ corresponding to a right triangle with integral sides X”, Y’, Z’
and area s°n, and then dividing the sides by s to get X, Y, Z. But in a primitive
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Pythagorean triple X’ and Y’ have different parity, and Z’ is odd. We
conclude that (1) x = (Z/2)? = (Z’/25)? has denominator divisible by 2 and
(2) the power of 2 dividing the denominator of Z is equal to the power of 2
dividing the denominator of one of the other two sides, while a strictly lower
power of 2 divides the denominator of the third side. (For example, in the
triangle in Fig. 1.2 with area 5, the hypotenuse and the shorter side have a 2in
the denominator, while the other leg does not.) We conclude that a necessary
condition for the point (x, y) with rational coordinates on the curve y* =
x3 — n?x to come from a right triangle is that x be a square and that its
denominator be divisible by 2. For example, when n = 31, the point (41%/72,
29520/7%) on the curve y2 = x* — 31%x does not come from a triangle, even
though its x-coordinate is a square. We next prove that these two conditions
are sufficient for a point on the curve to come from a triangle.

Proposition 2. Let (x, y) be a point with rational coordinates on the curve
y? = x3 — nx. Suppose that x satisfies the two conditions: (i) it is the square
of a rational number and (ii) its denominator is even. Then there exists a right
triangle with rational sides and area n which corresponds to x under the corre-
spondence in Proposition 1.

PROOF. Letu = ﬁ e Q. We work backwards through the sequence of steps
at the beginning of this section. That is, set v = y/u, so that v? = y?/x =
x? — r?ie.,v? + n® = x%. Nowlet £ be the denominator of u, i.e., the smallest
positive integer such that tueZ. By assumption, ¢ is even. Notice that the
denominators of v? and x? are the same (because » is an integer, and
v? + n? = x?), and this denominator is t*. Thus, t?v, t?n, t*x is a primitive
Pythagorean triple, with ¢%n even. By Problem 1 of §1, there exist integers
a and b such that: 13 = 2ab, 1*v = a* — b?, 1*x = a® + b*. Then the right
triangle with sides 2a/t, 2b/t, 2u has area 2ab/t* = n, as desired. The image
of this triangle X = 2a/t, Y = 2b/t, Z = 2u under the correspondence in
Proposition 1 is x = (Z/2)? = »*. This proves Proposition 2. O

We shall later prove another characterization of the points P = (x, y) on
the curve y* = x> — n*x which correspond to rational right triangles of
area n. Namely, they are the points P = (x, y) which are “twice” a rational
point P’ = (x’, y). That is, P' + P’ = P, where “ 4" is an addition law for
points on our curve, which we shall define later.

PROBLEMS

1. Find a simple linear change of variables that gives a one-to-one correspondence
between points on ny? = x>+ ax* + bx + ¢ and points on y? = x>+ anx? +
bn®x + cn. For example, an alternate form of the equation y* = x* — n?x is the
equation ny? = x* — x.

2. Another correspondence between rational right triangles X, ¥, Z with area XY =n
and rational solutions to y* = x* — n?x can be constructed as follows.



LI 1. From Congruent Numbers to Elliptic Curves

(4, v)

i
S\ov°

Figure 1.4

(a) Parametrize all right triangles by letting the point ¥ = X/Z, v = Y/Z on the unit
circle correspond to the slope  of the line joining (—1, 0) to this point (see
Fig. 1.4). Show that

(Note: This is the usual way to parametrize a conic. If ¢ = a/b is rational, then
the point (x, v) corresponds to the Pythagorean triple constructed by the method
at the beginning of the chapter.)

(b) If we want the triangle X, Y, Z to have area », express n/Z 2 in terms of 7.

(c) Show that the point x = —nt, y = n*(1 4 £2)/Z is on the curve y? = x3 — nx.
Express (x, y) in terms of X, Y, Z.

{d) Conversely, show that any point (x, y) on the curve y? = x> — n?x with y # 0
comes from a triangle, except that to get points with positive x, we must allow
triangles with negative X and Y (but positive area XY = ), and to get points
with negative y we must allow negative Z (see Fig. I.5). Later in this chapter we
shall show the connection between this correspondence and the one given in the
text above.

(e) Find the points on y* = x* — 36x coming from the 3—4-5 right triangle and all
equivalent triangles (4-3-5, (—3)~(—4)-5, etc.).

- Generalize the congruent number problem as follows. Fix an angle 6 not necessarily

90°. But suppose that 4 = cos 8 and B = sin 8 are both rational. Let # be a square-

free natural number. One can then ask whether » is the area of any triangle with

rational sides one of whose angles is 0.

(a) Show that the answer to this question is equivalent to a question about rational
solutions to a certain cubic equation (whose coefficients depend on 6 as well
as n).

(b) Suppose that the line joining the point (—1, 0) to the point (4, B) on the unit
circle has slope 4. Show that the cubic in part (a) is equivalent (by a linear
change of variables) to the cubic 7y = x(x — A)(x + (1/4)). The classical con-
gruent number problem is, of course, the case 1 = 1.
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Figure 1.5

§3. Elliptic curves

The locus of points P = (x, y) satisfying y? = x* — nx is a special case of
what’s called an “‘elliptic curve”. More generally, let X be any field, and let
J(x)e K[x] be a cubic polynomial with coefficients in K which has distinct
roots (perhaps in some extension of K). We shall suppose that K does not
have characteristic 2. Then the solutions to the equation

¥ = %), 3.0

where x and y are in some extension K’ of K, are called the K’-points of the
elliptic curve defined by (3.1). We have just been dealing with the example
K=K =0Q, f(x) =x>—n?’x. Note that this example y*>=x>— n?x
satisfies the condition for an elliptic curve over any field K of characteristic
P, as long as p does not divide 2n, since the three roots 0, +n of f(x) = x> —
n%x are then distinct.

In general, if x,, y,€ K’ are the coordinates of a point on a curve C
defined by an equation F(x, y) = 0, we say that C is “smooth” at (x4, y,) if
the two partial derivatives 6F/0x and 0F/dy are not both zero at (x,, ¥,)-
This is the definition regardless of the ground field (the partial derivative
of a polynomial F(x, y) is defined by the usual formula, which makes sense
over any field). If K" is the field R of real numbers, this agrees with the usual
condition for C to have a tangent line. In the case F(x, y) = y? — f(x), the
partial derivatives are 2y, and —f'(x,). Since K’ is not a field of characteristic
2, these vanish simultaneously if and only if y, = 0 and x, is a multiple root
of f(x). Thus, the curve has a non-smooth point if and only if f(x) has a
multiple root. It is for this reason that we assumed distinct roots in the
definition of an elliptic curve: an elliptic curve is smooth at all of its points.



