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Preface

Topological quantum numbers crept up on the physics community before the com-
munity was aware of them. I did not think in these terms until I started working on
the topological aspects of long range order in the early 1970s, although I had been
working on aspects of superfluidity that are now regarded as topological for several
years before that. I should have known earlier of the importance of topology, as I
was then a colleague of Tony Skyrme, whose pioneering work on topological quan-
tum numbers is now so well known. It was around this time that there began to be
a wide awarenesss of the importance of topology both amongst elementary particle
theorists and field theorists, and amongst people who worked on superfluids and
liquid crystals. The issue was brought sharply into focus for me in 1980, when Hans
Dehmelt asked me about how the quantum Hall effect could possibly be used to
determine the fine-structure constant when so little was known about the details of
the devices used and so little understood about the theory.

Dehmelt’s question is one of the unifying themes of this book, particularly in
Chapters 2 to 5 and in Chapter 7. The answer is not entirely simple, since, although
topological quantum numbers can provide a correspondence between countable in-
teger quantities and physical observables, this correspondence is not usually exact,
and corrections may be more or less important.

A second theme, provided by the work on liquid crystals, and on the A phase
of superfluid 3He, is the use of topological quantum numbers to classify defects, in
situations where the relevant group is finite, rather than isomorphic to the infinite
group of integers.

The third theme, covered in the last chapter, is the importance of topological
concepts in the theory of phase transitions in two dimensions.

I have tried in this book to give enough background material to make it accessible
to people whose knowledge of quantum mechanics and statistical mechanics is at
the level expected in the second year of a U.S. graduate program in physics. For
Chapters 6 and 8 a little knowledge of the theory of finite groups is also necessary.
I have not assumed any previous knowledge of topology.
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This book developed from a series of lectures given at the University of Washing-
ton in the winter of 1994, and I am particularly grateful to the people who attended
those lectures and provided lively discussion of the material presented. Among the
people who have particularly helped to sharpen my views of this material are my
colleagues and former colleagues Ian Aitchison, Ping Ao, Michael Geller, Qian Niu
and Boris Spivak, and my students Junghoon Han, Kiril Tsemekhman, Vadim
Tsemekhman and Carlos Wexler. Carlos Wexler and Kiril Tsemekhman also helped
by turning many of my figures into postscript files, and all of my students have .
provided me with instruction in the intelligent use of Latex.

I supplemented my lectures by providing copies of classic papers on the subject,
and I have done the same in this book. There is a selection of relevant papers, some
very old and a few quite new, in the second part of this book. I am grateful to the
publishers and authors who have given permission for the reprinting of these papers,
and particularly grateful to those authors who have supplied the Publisher with
reprints of their papers, which reproduce much better than photocopies of bound
periodicals. I am also grateful to members of the Theory of Condensed Matter group
at the Cavendish Laboratory for allowing me to copy from their extensive collection
of unbound periodicals.

The book has been written slowly because I have been much involved in
other things during the past four years. Some of these things, concerned with the
properties of quantized vortices, have made their appearance in Chapter 3. I am
grateful for the help that I have had from my colleagues at the University of Wash-
ington, and for the hospitality I have received from those institutions to which I
have escaped from my normal responsibilities, the Institute for Theoretical Physics
at Santa Barbara, the Aspen Center for Physics, and the Isaac Newton Institute
at Cambridge. The National Science Foundation has encouraged this activity by
financial support provided through grant number DMR-9528345. Finally I wish to
thank my wife Margaret for her support throughout the years, and for tolerating
my absences listed above.

David Thouless
December 1997
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1 Introduction

1.1 Whole numbers in physics

The relevance of integer quantities in physics has been known for at least 25 cen-
turies, and goes back to the work of Pythagoras on the normal modes of a stretched
string and the theory of musical harmony, and to the ideas of Democritus on the
atomic constitution of matter. In many ways a physics based on integers and ratio-
nal numbers is more natural than a continuum theory, and it was a shock to Greek
mathematicians to discover that the ratio of the diagonal of a square to its side
could not be expressed as a ratio of integers.

In modern physics the initial developments were in terms of continuum theo-
ries, although discrete aspects of physics were always in people’s minds — Kepler’s
attempt to relate radii of planetary orbits to the regular solids, and Newton'’s cor-
puscular theory of light and theory of surface tension are examples. Integers really
came into their own again at the beginning of the nineteenth century, with the work
of Dalton and of Avogadro on chemical proportions, naturally interpreted in terms
of atoms, and with Faraday’s establishment of an analogous quantization of electric
charge. There was a hundred years of rearguard resistance to atomic theory, which
persisted until the beginning of the twentieth century. The measurements within a
few years of one another of the Boltzmann constant, of the electron charge, of single
events in radioactive decay, and of the atomic spacing in crystals put a stop to the
idea that laws of proportion might exist in the absence of a fundamental atomic
scale.

The idea that fundamental quantized entities might be related to one another
through a continuum theory never really died, and the first successful theory of
this sort was derived by Dirac [1], in the paper reprinted here as Reprint 2.1. This
paper was the ancestor of all later work on topological quantum numbers, and
showed that magnetic monopoles can be allowed in quantum theory only if their
charge is related to the electric charge of the electron and of the proton in a definite
way. Later work by Heisenberg, Skyrme, Witten and many others tried to build up
quantized particles as topological singularities of a field. That is not what this book



is primarily about, but it is rather concerned with aspects of nonrelativistic physics
that display topological quantization. Some topological quantum numbers turn out
to be very important in high precision measurements, while others, while useful for
classification, are much less directly related to readily measurable quantities.

High precision work generally depends on two ingredients. These are repro-
ducibility, and the reduction of a measurement to a counting procedure. A ruler
is a device for comparing a length with the number of marks along the ruler, and
a vernier allows interpolation between marks on the main scale also to be done by
counting. A pendulum clock and its successors are devices for comparing a time
interval with the number of ticks that occur in the interval. Such devices are not
completely reproducible, and may vary when conditions change. The earth’s rota-
tional and orbital motion provide time standards that can be used for calibration,
but they are difficult to measure with very high precision, and we know that the
rotational motion is subject to random as well as to systematic changes. Cesium
atoms and ammonia molecules are reproducible, and they can form the basis for
length measurements in which interference fringes are counted, or as time standards
by driving the system in resonance with with a standard atomic or molecular tran-
sition and counting beats against some uncalibrated frequency. The measurement of
g for the electron to parts in 10!! is achieved, in part, by measuring the frequency
difference between the spin and twice the orbital resonance frequency in a magnetic
field [2].

Counting can be made very precise because, although any particular counter may
make mistakes, comparison between the outputs of several independent counters can
reduce the error rate to an extremely low value.

Over the past 30 years several devices have been developed for use in high preci-
sion work where the devices themselves are manifestly not reproducible, but never-
theless give fantastically reproducible results. Among such devices are the SQUID
magnetometer, which compares magnetic flux in a superconducting ring with the
quantum of flux h/2e for a superconductor, the Josephson voltmeter, which com-
pé,res the frequency of a microwave device with the frequency 2eV/h generated by
a voltage V across a superconducting weak link, and a quantum Hall conductance
standard, which compares electrical conductance with the quanta e?/h for conduc-
tance in a quantum Hall device. In none of these cases does the fabrication of the
device have to be very tightly controlled, but there are good theoretical reasons and
very strong experiments to show that different devices, even those made of different
materials, give measurements that are essentially identical. This insensitivity to de-
tails is a characteristic of topological quantum numbers that is one of the themes of

this book.



1.2 Quantum numbers due to symmetry and topological
quantum numbers

The quantum numbers we know from elementary quantum mechanics are, for the
most part, related to symmetry operations. The classic case of such a set of num-
bers is provided by the theory of angular momentum, which is based on rotation
invariance. The usual development of the theory uses the Lie algebra of the three
generators of the rotation group, '

3
[Ji,.]j] = —iﬁzfijk-]k y (1.1)
k=1
where €;;; is zero if two of the indices 4, j, k are equal, is +1 if they are an even

permutation of 1,2,3, and —1 if they are an odd permutation. The textbooks show
that the Casimir operator

J2 =" J} (1.2)

commutes with each of the components j,-, and that the operators g % z’jz are
raising and lowering operators for the eigenvalues of Js. Taken together with the
boundedness of J? and the positivity of J2 for each value of i this is enough to show
that J2 has eigenvalues h%J (J + 1), where J is an integer or half integer, while Js
has a simultaneous eigenvalue AM;, where M is an integer or half integer in the
range —J < M; < J.

This structure is closely related to the existence of the rotational symmetry of
the Hamiltonian, and once there are terms in the Hamiltonian that violate this
symmetry the stationary states of the system lose this structure. Measurements of
the angular momentum components still yield integer values, but stationary states
are characterized by continuously variable expectation values of the components if
the symmetry is broken.

Similar algebraic structure comes up in many other systems. The SU(2) sym-
metry of a two-dimensional harmonic oscillator or the SU(3) symmetry of a three-
dimensional oscillator are examples, and this symmetry is broken by the anhar-
monicity of the potential. The same feature of a potential inversely proportional to
distance that leads to closed orbits in classical mechanics gives the degeneracy of
- the hydrogen atomic spectrum that is described by the four-dimensional rotation
group O(4); again, deviations of the potential from this form lead to breaking of
this symmetry, such as one sees in the spectra of the alkali metal atoms. The isospin
symmetry of strong interactions, postulated in 1936 by Cassen and Condon (3], is
another famous example, and this is broken by the electromagnetic interactions of
the baryons and mesons.



Topological quantum numbers can behave very differently, preserving their iden-
tity under relatively strong perturbations. For example, as is discussed in more
detail in Chapter 3, the circulation of superfluid ‘He around a wire is quantized
in multiples of h/m. Although this circulation can be related, under conditions of
ideal axial symmetry about the wire, to the average angular momentum per atom in
the superfluid, this is quite irrelevant. Quantized circulation in this case is related
to the winding number of a condensate wave function, the change of phase of the
wave function along a circuit around the wire, and is quite insensitive to the geo-
metrical details of the wire and the enclosure. The angular momentum per atom,
by contrast, is rather sensitive to the detailed geometry of the system. The story
about flux quantization in superconducting rings, discussed in Chapter 4, is very
similar, with the number of flux quanta again equal to the winding number of a
condensate wave function. There are no special requirements on the geometrical or
material properties of the ring, just that it should not be grossly inhomogeneous
or irregular in shape. In this case it is thought that the measured flux differs from
the ideal quantized value by an amount that can be made exponentially small by
a suitable choice of parameters, and experimental measurements confirm that dif-
ferent devices made with different materials display the same quantum of flux with
very high accuracy.

Not all topological quantum numbers work in this way. Just because there isa
mathematical quantity with well-defined integer values does not mean that there is
a corresponding measurable physical quantity which has to be integer-valued. The
superfluid phases of liquid 3He, which are discussed in Chapter 6, illustrate this
point. Whereas circulation in the B phase is quantized in much the same way as
the circulation in *He, there is no quantized circulation in the A phase. There is
a topological quantum number corresponding to the one which measures superfluid
circulation in *He and B-3He, but this quantum number has only the values 0 and
1, and does not correspond in any direct way to the circulation of the fluid. Such
quantum numbers are still useful for classifying defects, and for determining whether

two apparently different states of the system can actually be continuously changed
from one to the other.

1.3 Topics covered in this book

In the remainder of this chapter some important concepts are introduced and dis-
cussed. In Sec. 1.4 the concept of an order parameter in a macroscopic system is
discussed. This concept has been of great importance in the theory of phase transi-
tions since the early work of Landaul[4], and it underlies all the discussion of topo-
logical quantum numbers in macroscopic materials in this book. Closely related to



