
典

计算机网络

系统方法

(英文版·第4版)

COMPUTER NETWORKS

A SYSTEMS APPROACH

LARRY L. PETERSON AND BRUCE S. DAVIE

(美) Larry L. Peterson 著 Bruce S. Davie

机械工业出版社 China Machine Press 经 典 原 版 书 库

计算机网络

系统方法

(英文版·第4版)

Computer Networks

A Systems Approach

(Fourth Edition)

(美) Larry L. Peterson 著 Bruce S. Davie

Larry L. Peterson and Bruce S. Davie: Computer Networks: A Systems Approach, Fourth Edition (ISBN 13: 978-0-12-370548-8 ISBN 10: 0-12-370548-7).

Original English language edition copyright © 2007 by Elsevier Inc. All rights reserved.

Authorized English language reprint edition published by the Proprietor.

ISBN: 978-981-259-917-9

Copyright © 2007 by Elsevier (Singapore) Pte Ltd.

Printed in China by China Machine Press under special arrangement with Elsevier (Singapore) Pte Ltd. This edition is authorized for sale in China only, excluding Hong Kong SAR and Taiwan.

Unauthorized export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and Criminal Penalties.

本书英文影印版由Elsevier (Singapore) Pte Ltd.授权机械工业出版社在中国大陆境内独家发行。本版仅限在中国境内(不包括香港特别行政区及台湾地区)出版及标价销售。未经许可之出口,视为违反著作权法,将受法律之制裁。

版权所有, 侵权必究。

本书法律顾问 北京市展达律师事务所

本书版权登记号:图字:01-2007-2451

图书在版编目(CIP)数据

计算机网络:系统方法 (英文版·第4版) / (美) 彼得森 (Peterson, L. L.), (美) 戴维 (Davie, B. S.) 著. -北京:机械工业出版社,2007.5

(经典原版书库)

书名原文: Computer Networks: A Systems Approach, Fourth Edition ISBN 978-7-111-21401-4

I. 计… II. ① 彼… ② 戴… III. 计算机网络 - 英文 IV. TP393

中国版本图书馆CIP数据核字(2007)第059416号

机械工业出版社(北京市西城区百万庄大街22号 邮政编码 100037) 责任编辑:迟振春 北京京北制版厂印刷·新华书店北京发行所发行 2007年5月第1版第1次印刷 170mm×242mm · 52印张 定价:85.00元

凡购本书,如有倒页、脱页、缺页,由本社发行部调换 本社购书热线: (010) 68326294

出版者的话

文艺复兴以降,源远流长的科学精神和逐步形成的学术规范,使西方国家在自然科学的各个领域取得了垄断性的优势,也正是这样的传统,使美国在信息技术发展的六十多年间名家辈出、独领风骚。在商业化的进程中,美国的产业界与教育界越来越紧密地结合,计算机学科中的许多泰山北斗同时身处科研和教学的最前线,由此而产生的经典科学著作,不仅攀划了研究的范畴,还揭橥了学术的源变,既遵循学术规范、又自有学者个性,其价值并不会因年月的流逝而减退。

近年,在全球信息化大潮的推动下,我国的计算机产业发展迅猛,对专业人才的需求日益迫切。这对计算机教育界和出版界都既是机遇,也是挑战,而专业教材的建设在教育战略上显得举足轻重。在我国信息技术发展时间较短、从业人员较少的现状下,美国等发达国家在其计算机科学发展的几十年间积淀的经典教材仍有许多值得借鉴之处。因此,引进一批国外优秀计算机教材将对我国计算机教育事业的发展起积极的推动作用,也是与世界接轨、建设真正的世界一流大学的必由之路。

机械工业出版社华章图文信息有限公司较早意识到"出版要为教育服务"。自1998年开始,华章公司就将工作重点放在了遴选、移译国外优秀教材上。经过几年的不懈努力,我们与Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann等世界著名出版公司建立了良好的合作关系,从它们现有的数百种教材中甄选出Tanenbaum, Stroustrup, Kernighan, Jim Gray等大师名家的一批经典作品,以"计算机科学丛书"为总称出版,供读者学习、研究及庋藏。大理石纹理的封面,也正体现了这套从书的品位和格调。

"计算机科学丛书"的出版工作得到了国内外学者的鼎力襄助,国内的专家不仅提供了中肯的选题指导,还不辞劳苦地担任了翻译和审校的工作,而原书的作者也相当关注其作品在中国的传播,有的还专程为其书的中译本作序。迄今,"计算机科学丛书"已经出版了近百个品种,这些书籍在读者中树立了良好的口碑,并被许多高校采用为正式教材和参考书籍,为进一步推广与发展打下了坚实的基础。

随着学科建设的初步完善和教材改革的逐渐深化,教育界对国外计算机教材的需求和应用都步入一个新的阶段。为此,华章公司将加大引进教材的力度,在"华章教育"的总规划之下出版三个系列的计算机教材:除"计算机科学丛书"之外,对影印版的教材,则单独开辟出"经典原版书库";同时,引进全美通行的教学辅导书"Schaum's Outlines"系列组成"全美经典学习指导系列"。为了保证这三套丛书的权威性,同时也为了更好地为学校和老师们服务,华章公司聘请了中国科学院、北京大学、清华大学、国防科技大学、复旦大学、上海交通大学、南京大学、浙江

大学、中国科技大学、哈尔滨工业大学、西安交通大学、中国人民大学、北京航空 航天大学、北京邮电大学、中山大学、解放军理工大学、郑州大学、湖北工学院、 中国国家信息安全测评认证中心等国内重点大学和科研机构在计算机的各个领域的 著名学者组成"专家指导委员会",为我们提供选题意见和出版监督。

这三套丛书是响应教育部提出的使用外版教材的号召,为国内高校的计算机及相关专业的教学度身订造的。其中许多教材均已为M. I. T., Stanford, U.C. Berkeley, C. M. U. 等世界名牌大学所采用。不仅涵盖了程序设计、数据结构、操作系统、计算机体系结构、数据库、编译原理、软件工程、图形学、通信与网络、离散数学等国内大学计算机专业普遍开设的核心课程,而且各具特色——有的出自语言设计者之手、有的历经三十年而不衰、有的已被全世界的几百所高校采用。在这些圆熟通博的名师大作的指引之下,读者必将在计算机科学的宫殿中由登堂而入室。

权威的作者、经典的教材、一流的译者、严格的审校、精细的编辑,这些因素 使我们的图书有了质量的保证,但我们的目标是尽善尽美,而反馈的意见正是我们 达到这一终极目标的重要帮助。教材的出版只是我们的后续服务的起点。华章公司 欢迎老师和读者对我们的工作提出建议或给予指正,我们的联系方法如下:

电子邮件: hzjsj@hzbook.com 联系电话: (010) 68995264

联系地址:北京市西城区百万庄南街1号

邮政编码: 100037

专家指导委员会

(按姓氏笔画顺序)

尤晋元 王 冯博琴 珊 史忠植 史美林 石教英 吕 建 孙玉芳 吴世忠 吴时霖 李伟琴 张立昂 李建中 李师贤 杨冬青 邵维忠 陆丽娜 陆鑫达 陈向群 周伯生 周克定 周傲英 孟小峰 岳丽华 范 明 郑国梁 施伯乐 钟玉琢 唐世渭 袁崇义 高传善 梅宏 程 旭 程时端 谢希仁 裘宗燕 戴 芨

To Lee Peterson and Robert Davie

David D. Clark Massachusetts Institute of Technology

It is now ten years since this classic book first appeared. Looking back, it is amazing what has happened in that time. We have seen the transformation of the Web from a small experiment to a World Wide phenomenon. We have seen the emergence of voice over IP and peer-to-peer content sharing. We have seen technology speed up a hundred-fold, the emergence of broadband to the home, and the rise of botnets and other horrid security problems. Many things have changed, technology has come and gone, and (perhaps equally amazing) much of the basics of the Internet are still there.

This book, too, has changed much in ten years, with four editions to keep up. But the basic value of the book remains the same as the first edition. This book gives you the facts you need, and puts those facts into the larger context so that the knowledge you gain will be of value even as the details change. Reading this book informs you about today and prepares you for tomorrow. One new feature is a set of sidebars that illustrate the context of ideas being presented in the text—the *why* of the ideas. Why did an idea fail? Why did it succeed?

What has changed in the book? Some technologies have faded from sight, and get less attention in this edition. We bid a fond farewell to FDDI and ATM LANs. Some technologies have mutated and emerged in new forms. Remote Procedure Call is no longer a LAN-based low-level invocation mechanism, but the foundation of Internetwide Web Services. We welcome gigabit Ethernet, an updated and expanded section on wireless, and more on router implementation. The material on TCP is up to date, with discussion of new acknowledgment schemes and extensions for high speed.

With the increasing concern with security, there is a completely revised chapter with a new emphasis on a systems approach to security, and a discussion of threats and how to counter them. And at the end, there is a chapter that helps you "put it all together," using case studies at the application layer (VoIP, multimedia, and peer to peer) to show how all the concepts from the previous chapters combine to provide the system that supports these applications.

viii Foreword

The evolution of networks is not going to slow down. Soon we will be talking about the impact of television over IP, the collision of the Internet and sensor networks, and lots of other very new and exciting ideas. But relax—if you read this book today you will have the insights you need for tomorrow.

David Clark

Massachusetts Institute of Technology

he term spaghetti code is universally understood as an insult. All good computer scientists worship the god of modularity, since modularity brings many benefits, including the all-powerful benefit of not having to understand all parts of a problem at the same time in order to solve it. Modularity thus plays a role in presenting ideas in a book, as well as in writing code. If a book's material is organized effectively—modularly—the reader can start at the beginning and actually make it to the end.

The field of network protocols is perhaps unique in that the "proper" modularity has been handed down to us in the form of an international standard: the seven-layer reference model of network protocols from the ISO. This model, which reflects a layered approach to modularity, is almost universally used as a starting point for discussions of protocol organization, whether the design in question conforms to the model or deviates from it.

It seems obvious to organize a networking book around this layered model. However, there is a peril to doing so, because the OSI model is not really successful at organizing the core concepts of networking. Such basic requirements as reliability, flow control, or security can be addressed at most, if not all, of the OSI layers. This fact has led to regreat confusion in trying to understand the reference model. At times it even requires a suspension of disbelief. Indeed, a book organized strictly according to a layered model has some of the attributes of spaghetti code.

Which brings us to this book. Peterson and Davie follow the traditional layered model, but they do not pretend that this model actually helps in the understanding of the big issues in networking. Instead, the authors organize discussion of fundamental concepts in a way that is independent of layering. Thus, after reading the book, readers will understand flow control, congestion control, reliability enhancement, data representation, and synchronization, and will separately understand the implications of addressing these issues in one or another of the traditional layers.

This is a timely book. It looks at the important protocols in use today—especially the Internet protocols. Peterson and Davie have a long involvement in and much ex-

x Foreword to the First Edition

perience with the Internet. Thus their book reflects not just the theoretical issues in protocol design, but the real factors that matter in practice. The book looks at some of the protocols that are just emerging now, so the reader can be assured of an up-to-date perspective. But most importantly, the discussion of basic issues is presented in a way that derives from the fundamental nature of the problem, not the constraints of the layered reference model or the details of today's protocols. In this regard, what this book presents is both timely and timeless. The combination of real-world relevance, current examples, and careful explanation of fundamentals makes this book unique.

hen the first edition of this book was published in 1996, it was a novelty to be able to order merchandise on the Internet, and a company that advertised its domain name was considered cutting edge. Today, Internet commerce is a fact of life, and ".com" stocks have gone through an entire boom and bust cycle. A host of new technologies ranging from optical switches to wireless networks are now becoming mainstream. It seems the only predictable thing about the Internet is constant change.

Despite these changes the question we asked in the first edition is just as valid today: What are the underlying concepts and technologies that make the Internet work? The answer is that much of the TCP/IP architecture continues to function just as was envisioned by its creators more than 30 years ago. This isn't to say that the Internet architecture is uninteresting; quite the contrary. Understanding the design principles that underly an architecture that has not only survived but fostered the kind of growth and change that the Internet has seen over the past three decades is precisely the right place to start. Like the previous editions, the third edition makes the "why" of the Internet architecture its cornerstone.

Audience

Our intent is that the book should serve as the text for a comprehensive networking class, at either the graduate or upper-division undergraduate level. We also believe that the book's focus on core concepts should be appealing to industry professionals who are retraining for network-related assignments, as well as current network practitioners who want to understand the "whys" behind the protocols they work with every day and to see the big picture of networking.

It is our experience that both students and professionals learning about networks for the first time often have the impression that network protocols are some sort of edict handed down from on high, and that their job is to learn as many TLAs (three-letter acronyms) as possible. In fact, protocols are the building blocks of a complex system developed through the application of engineering design principles. Moreover, they are constantly being refined, extended, and replaced based on real-world experience. With

this in mind, our goal with this book is to do more than survey the protocols in use today. Instead, we explain the underlying principles of sound network design. We feel that this grasp of underlying principles is the best tool for handling the rate of change in the networking field.

Changes in the Fourth Edition

Even though our focus is on the underlying principles of networking, we illustrate these principles using examples from today's working Internet. Therefore, we added a significant amount of new material to track many of the important recent advances in networking. We also deleted, reorganized, and changed the focus of existing material to reflect changes that have taken place over the past decade.

Perhaps the most significant change we have noticed since writing the first edition is that almost every reader now has some familiarity with networked applications such as the World Wide Web and email. For this reason, we have increased the focus on applications, starting in the first chapter. We use applications as the motivation for the study of networking, and to derive a set of requirements that a useful network must meet if it is to support both current and future applications on a global scale. However, we retain the problem-solving approach of previous editions that starts with the problem of interconnecting hosts and works its way up the layers to conclude with a detailed examination of application layer issues. We believe it is important to make the topics covered in the book relevant by starting with applications and their needs. At the same time, we feel that higher-layer issues, such as application layer and transport layer protocols, are best understood after the basic problems of connecting hosts and switching packets have been explained.

As we did in the second and third editions, we have added or increased coverage of important new topics, and brought other topics up to date. Major new or substantially updated topics in this edition are:

- Comprehensively revised and updated coverage of security, with a focus on building secure systems, not just on cryptographic algorithms;
- Expanded and updated coverage of XML (extensible markup language);
- An updated section on overlay networks, including "peer-to-peer" networking and "content distribution networks";
- A new section on web services, including the SOAP and REST (Representational State Transfer) architectures;

- Updated material on wireless technology, including the 802.11 (WiFi) and 802.16 (WiMAX) standards as well as cellular wireless technologies including the 3G (third generation) standards;
- Expanded coverage of interdomain routing;
- Expanded coverage on protocols and quality of service for multimedia applications such as voice over IP (VoIP) and video streaming;
- Updated coverage of congestion control mechanisms, particularly for high bandwidth-delay product networks.

In addition, we have added a new feature to this edition: "Where are they now?" sidebars. These short discussions focus on the success and failure of protocols in the real world. Sometimes they describe a protocol that most people have written off but which is actually enjoying unheralded success; other times they trace the fate of a protocol that failed to thrive over the long run. The goal of these sidebars is to make the material relevant by showing how technologies have fared in the competitive world of networking.

Approach

For an area that's as dynamic and changing as computer networks, the most important thing a textbook can offer is perspective—to distinguish between what's important and what's not, and between what's lasting and what's superficial. Based on our experience over the past 20-plus years doing research that has led to new networking technology, teaching undergraduate and graduate students about the latest trends in networking, and delivering advanced networking products to market, we have developed a perspective—which we call the *systems approach*—that forms the soul of this book. The systems approach has several implications:

- Rather than accept existing artifacts as gospel, we start first with principles and walk you through the thought process that led to today's networks. This allows us to explain why networks look like they do. It is our experience that once you understand the underlying concepts, any new protocol that you are confronted with will be relatively easy to digest.
- Although the material is loosely organized around the traditional network layers, starting at the bottom and moving up the protocol stack, we do not adopt a rigidly layerist approach. Many topics—congestion control and security are good examples—have implications up and down the hierarchy, and so we discuss them outside the traditional layered model. In short, we believe layering makes a good servant but a poor master; it's more often useful to take an end-to-end perspective.

- Rather than explain how protocols work in the abstract, we use the most important protocols in use today—many of them from the TCP/IP Internet—to illustrate how networks work in practice. This allows us to include real-world experiences in the discussion.
- Although at the lowest levels networks are constructed from commodity hardware that can be bought from computer vendors and communication services that can be leased from the phone company, it is the software that allows networks to provide new services and adapt quickly to changing circumstances. It is for this reason that we emphasize how network software is implemented, rather than stopping with a description of the abstract algorithms involved. We also include code segments taken from a working protocol stack to illustrate how you might implement certain protocols and algorithms.
- Networks are constructed from many building-block pieces, and while it is necessary to be able to abstract away uninteresting elements when solving a particular problem, it is essential to understand how all the pieces fit together to form a functioning network. We therefore spend considerable time explaining the overall end-to-end behavior of networks, not just the individual components, so that it is possible to understand how a complete network operates, all the way from the application to the hardware.
- The systems approach implies doing experimental performance studies, and then using the data you gather both to quantitatively analyze various design options and to guide you in optimizing the implementation. This emphasis on empirical analysis pervades the book.
- Networks are like other computer systems—for example, operating systems, processor architectures, distributed and parallel systems, and so on. They are all large and complex. To help manage this complexity, system builders often draw on a collection of design principles. We highlight these design principles as they are introduced throughout the book, illustrated, of course, with examples from computer networks.

Pedagogy and Features

The fourth edition retains several features from prior editions, and adds one more, that we encourage you to take advantage of:

Problem statements. At the start of each chapter, we describe a problem that identifies the next set of issues that must be addressed in the design of a network. This statement introduces and motivates the issues to be explored in the chapter.

- Shaded sidebars. Throughout the text, shaded sidebars elaborate on the topic being discussed or introduce a related advanced topic. In many cases, these sidebars relate real-world anecdotes about networking.
- "Where are they now?" sidebars. These new elements trace the success and failure of protocols in real-world deployment.
- Highlighted paragraphs. These paragraphs summarize an important nugget of information that we want you to take away from the discussion, such as a widely applicable system design principle.
- Real protocols. Even though the book's focus is on core concepts rather than existing protocol specifications, real protocols are used to illustrate most of the important ideas. As a result, the book can be used as a source of reference for many protocols. To help you find the descriptions of the protocols, each applicable section heading parenthetically identifies the protocols described in that section. For example, Section 5.2, which describes the principles of reliable end-to-end protocols, provides a detailed description of TCP, the canonical example of such a protocol.
- Open issues. We conclude the main body of each chapter with an important issue that is currently being debated in the research community, the commercial world, or society as a whole. We have found that discussing these issues helps to make the subject of networking more relevant and exciting.
- Recommended reading. These highly selective lists appear at the end of each chapter. Each list generally contains the seminal papers on the topics just discussed. We strongly recommend that advanced readers (e.g., graduate students) study the papers in this reading list to supplement the material covered in the chapter.

Road Map and Course Use

The book is organized as follows:

- Chapter 1 introduces the set of core ideas that are used throughout the rest of the text. Motivated by widespread applications, it discusses what goes into a network architecture, provides an introduction to protocol implementation issues, and defines the quantitative performance metrics that often drive network design.
- Chapter 2 surveys a wide range of low-level network technologies, ranging from Ethernet to token ring to wireless. It also describes many of the issues that all data link protocols must address, including encoding, framing, and error detection.

- Chapter 3 introduces the basic models of switched networks (datagrams versus virtual circuits) and describes two prevalent switching technologies—switched Ethernet and ATM—in some detail. It also discusses the design of hardware-based switches.
- Chapter 4 introduces internetworking and describes the key elements of the Internet Protocol (IP). A central question addressed in this chapter is how networks that scale to the size of the Internet are able to route packets. Unicast, multicast, and interdomain routing are covered.
- Chapter 5 moves up to the transport level, describing both the Internet's Transmission Control Protocol (TCP) and Remote Procedure Call (RPC) used to build client-server applications in detail. The Real-time Transport Protocol (RTP), which supports multimedia applications, is also described.
- Chapter 6 discusses congestion control and resource allocation. The issues in this chapter cut across both the network level (Chapters 3 and 4) and the transport level (Chapter 5). Of particular note, this chapter describes how congestion control works in TCP, and it introduces the mechanisms used to provide quality of service in IP.
- Chapter 7 considers the data sent through a network. This includes both the problems of presentation formatting and data compression. XML is covered here, and the compression section includes explanations of how MPEG video compression and MP3 audio compression work.
- Chapter 8 discusses network security, beginning with an overview of cryptographic tools, the problems of key distribution, and a discussion of several authentication techniques using both public and private keys. The main focus of this chapter is the building of secure systems, using examples including Pretty Good Privacy (PGP), Secure Shell (SSH), and the IP Security architecture (IPSEC). Firewalls are also covered here.
- Chapter 9 describes a representative sample of network applications and the protocols they use, including traditional applications like email and the Web, multimedia applications such as IP telephony and video streaming, and overlay networks like peer-to-peer file sharing and content distribution networks. The Web Services architectures for developing new application protocols are also presented here.

For an undergraduate course, extra class time will most likely be needed to help students digest the introductory material in the first chapter, probably at the expense