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Preface

George M. Zaslavsky was born in Odessa, Ukraine in 1935 in a family of an artillery
officer. He received education at the University of Odessa and moved in 1957 to
Novosibirsk, Russia. In 1965, George joined the Institute of Nuclear Physics where
he became interested in nonlinear problems of accelerator and plasma physics.
Roald Sagdeev and Boris Chirikov were those persons who formed his interest in
the theory of dynamical chaos. In 1968 George introduced a separatrix map that
became one of the major tools in theoretical study of Hamiltonian chaos. The work
“Stochastical instability of nonlinear oscillations” by G. Zaslavsky and B. Chirikov,
published in Physics Uspekhi in 1971, was the first review paper “opened the eyes™
of many physicists to power of the theory of dynamical systems and modern ergodic
theory. It was realized that very complicated behavior is possible in dynamical sys-
tems with only a few degrees of freedom. This complexity cannot be adequately
described in terms of individual trajectories and requires statistical methods. Typi-
cal Hamiltonian systems are not integrable but chaotic, and this chaos is not homo-
geneous. At the same values of the control parameters, there coexist regions in the
phase space with regular and chaotic motion. The results obtained in the 1960s were
summarized in the book “Statistical Irreversibility in Nonlinear Systems” (Nauka,
Moscow, 1970).

The end of the 1960s was a hard time for George. He was forced to leave the
Institute of Nuclear Physics in Novosibirsk for signing letters in defense of some
Soviet dissidents. George got a position at the Institute of Physics in Krasnoyarsk,
not far away from Novosibirsk. There he founded a laboratory of the theory of non-
linear processes which exists up to now. In Krasnoyarsk George became interested
in the theory of quantum chaos. The first rigorous theory of quantum resonance was
developed in 1977 in collaboration with his co-workers. They introduced the impor-
tant notion of quantum break time (the Ehrenfest time) after which quantum evolu-
tion begins to deviate from a semiclassical one. The results obtained in Krasnoyarsk
were summarized in the book “Chaos in Dynamical Systems” (Nauka, Moscow and
Harwood, Amsterdam, 1985).

In 1984, R. Sagdeev invited George to the Institute of Space Research in Moscow.
There he has worked on the theory of degenerate and almost degenerate Hamilto-
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nian systems, anomalous chaotic transport, plasma physics, and theory of chaos in
waveguides. The book “Nonlinear Physics: from the Pendulum to Turbulence and
Chaos” (Nauka, Moscow and Harwood, New York, 1988), written with R. Sagdeeyv,
is now a classical textbook for everybody who studies chaos theory. When studying
interaction of a charged particle with a wave packet, George with colleagues from
the Institute discovered that stochastic layers of different separatrices in degenerated
Hamiltonian systems may merge producing a stochastic web. Unlike the famous
Arnold diffusion in non-degenerated Hamiltonian systems, that appears only if the
number of degrees of freedom exceeds 2, diffusion in the Zaslavsky webs is possible
at one and half degrees of freedom. This diffusion is rather universal phenomenon
and its speed is much greater than that of Arnoid diffusion. Beautiful symmetries
of the Zaslavsky webs and their properties in different branches of physics have
been described in the book “Weak chaos and Quasi-Regular Structures” (Nauka,
Moscow, 1991 and Cambridge University Press, Cambridge, 1991) coauthored with
R. Sagdeev, D. Usikov, and A. Chernikov.

In 1991, George emigrated to the USA and became a Professor of Physics
and Mathematics at Physical Department of the New York University and at the
Courant Institute of Mathematical Sciences. The last 17 years of his life he de-
voted to principal problems of Hamiltonian chaos connected with anomalous kinet-
ics and fractional dynamics, foundations of statistical mechanics, chaotic advection,
quantum chaos, and long-range propagation of acoustic waves in the ocean. In his
New York period George published two important books on the Hamiltonian chaos:
“Physics of Chaos in Hamiltonian Systems” (Imperial College Press, London, 1998)
and “Hamiltonian chaos and Fractional Dynamics” (Oxford University Press, NY,
2005). His last book “Ray and wave chaos in ocean acoustics: chaos in waveguides”
(World Scientific Press, Singapore, 2010), written with D. Makarov, S. Prants, and
A. Virovlynsky, reviews original results on chaos with acoustic waves in the under-
water sound channel.

George was a very creative scientist and a very good teacher whose former stu-
dents and collaborators are working now in America, Europe and Asia. He authored
and coauthored 9 books and more than 300 papers in journals. Many of his works
are widely cited. George worked hard all his life. He loved music, theater, literature
and was an expert in good vines and food. Only a few people knew that he loved
to paint. In the last years he has spent every summer in Provence, France, working,
writing books and papers and painting in water colors. The album with his water
colors was issued in 2009 in Moscow.

George Zaslavsky was one of the key persons in the theory of dynamical chaos
and made many important contributions to a variety of other subjects. His books and
papers influenced very much in advancing modern nonlinear science.

Sergey Prants
Albert C.J. Luo
Valentin Afraimovich

March, 2010
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Chapter 1
Fractional Zaslavsky and Hénon Discrete Maps

Vasily E. Tarasov

Abstract This paper is devoted to the memory of Professor George M. Zaslavsky
passed away on November 25, 2008. In the field of discrete maps, George M. Za-
slavsky introduced a dissipative standard map which is called now the Zaslavsky
map. G. Zaslavsky initialized many fundamental concepts and ideas in the frac-
tional dynamics and kinetics. In this chapter, starting from kicked damped equa-
tions with derivatives of non-integer orders we derive a fractional generalization of
discrete maps. These fractional maps are generalizations of the Zaslavsky map and
the Hénon map. The main property of the fractional differential equations and the
correspondent fractional maps is a long-term memory and dissipation. The memory
is realized by the fact that their present state evolution depends on all past states
with special forms of weights.

1.1 Introduction

There are a number of distinct areas of mechanics and physics where the basic prob-
lems can be reduced to the study of simple discrete maps. Discrete maps have been
used for the study of dynamical problems, possibly as a substitute of differential
equations (Sagdeev et al., 1988; Zaslavsky, 2005; Chirikov, 1979; Schuster, 1988;
Collet and Eckman, 1980). They lead to a much simpler formalism, which is par-
ticularly useful in computer simulations. In this chapter, we consider discrete maps
that can be used to study the evolution described by fractional differential equations
(Samko et al., 1993; Podlubny, 1999; Kilbas et al., 2006).

The treatment of nonlinear dynamics in terms of discrete maps is a very important
step in understanding the qualitative behavior of continuous systems described by
differential equations. The derivatives of non-integer orders (Samko et al., 1993) are

Vasily E. Tarasov

Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow 119991, Russia,
e-mail: tarasov @theory.sinp.msu.ru



2 Vasily E. Tarasov

a natural generalization of the ordinary differentiation of integer order. Note that the
continuous limit of discrete systems with power-law long-range interactions gives
differential equations with derivatives of non-integer orders with respect to coordi-
nates (Tarasov and Zaslavsky, 2006; Tarasov, 2006). Fractional differentiation with
respect to time is characterized by long-term memory effects that correspond to in-
trinsic dissipative processes in the physical systems. The memory effects to discrete
maps mean that their present state evolution depends on all past states. The discrete
maps with memory are considered in the papers (Fulinski and Kleczkowski, 1987;
Fick et al., 1991; Giona, 1991; Hartwich and Fick, 1993; Gallas, 1993; Stanislavsky,
2006; Tarasov and Zaslavsky, 2008; Tarasov, 2009; Edelman and Tarasov, 2009).
The interesting question is a connection of fractional equations of motion and the
discrete maps with memory. This derivation is realized for universal and standard
maps in (Tarasov and Zaslavsky, 2008; Tarasov, 2009).

It is important to derive discrete maps with memory from equations of motion
with fractional derivatives. It was shown (Zaslavsky et al., 2006) that perturbed by a
periodic force, the nonlinear system with fractional derivative exhibits a new type of
chaotic motion called the fractional chaotic attractor. The fractional discrete maps
(Tarasov and Zaslavsky, 2008; Tarasov, 2009) can be used to study a new type of
attractors that are called pseudochaotic (Zaslavsky et al., 2006).

In this chapter, fractional equations of motion for kicked systems with dissipation
are considered. Correspondent discrete maps are derived. The fractional generaliza-
tions of the Zaslavsky map and the Hénon map are suggested.

In Sect. 1.2, we give a brief review of fractional derivatives to fix notation and
provide a convenient reference. In Sect. 1.3, the fractional generalizations of the Za-
slavsky map are suggested. A brief review of well-known discrete maps is consid-
ered to fix notations and provide convenient references. In Sect. 1.4, the fractional
generalizations of the Hénon map are considered. The differential equations with
derivatives of non-integer orders with respect to time are used to derive general-
izations of the discrete maps. In Sect. 1.5, a fractional generalization of differential
equation in which we use a fractional derivative of the order 0 < 8 < 1 in the kicked
term, i.e. the term of a periodic sequence of delta-function type pulses (kicks). The
other generalization is suggested in (Tarasov and Zaslavsky, 2008). The discrete
map that corresponds to the suggested fractional equation of order 0 < § < 1 is
derived. This map can be considered as a generalization of universal map for the
case 0 < B < 1. In Sect. 1.6, a fractional generalization of differential equation for
a kicked damped rotator is suggested. In this generalization, we use a fractional
derivative in the kicked damped term, i.e. the term of a periodic sequence of delta-
function type pulses (kicks). The other generalization is also suggested in (Tarasov
and Zaslavsky, 2008). The discrete map that corresponds to the suggested fractional
differential equation is derived. Finally, a short conclusion is given in Sect. 1.7.
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1.2 Fractional derivatives

In this section a brief introduction to fractional derivatives are suggested. Fractional
calculus is a theory of integrals and derivatives of any arbitrary order. It has a long
history from 1695, when the derivative of order ot = 1 /2 has been described by Got-
tfried Leibniz. The fractional differentiation and fractional integration goes back to
many mathematicians such as Leibniz, Liouville, Grunwald, Letnikov, Riemann,
Abel, Riesz, Weyl. The integrals and derivatives of non-integer order, and the frac-
tional integro-differential equations have found many applications in recent studies
in theoretical physics, mechanics and applied mathematics. There exists the remark-
ably comprehensive encyclopedic-type monograph by Samko, Kilbus and Marichev,
which was published in Russian in 1987 and in English in 1993. The works devoted
substantially to fractional differential equations are the book by Miller and Ross
(1993), and the book by Podlubny (1999). In 2006 Kilbas, Srivastava and Trujillo
published a very important and remarkable book, where one can find a modern ency-
clopedic, detailed and rigorous theory of fractional differential equations. The first
book devoted exclusively to the fractional dynamics and application of fractional
calculus to chaos is the book by Zaslavsky published in 2005.

Let us give a brief review of fractional derivatives to fix notation and provide a
convenient reference.

1.2.1 Fractional Riemann-Liouville derivatives

Let [a,b] be a finite interval on the real axis R. The fractional Riemann-Liouville
derivatives DY, and DY of order & > 0 are defined (Kilbas et al., 2006) by

(DZy f)(x) = DI %) (x)
1 2 [F f(2)dz

- I"(n—oz)D’r 0 (x—g)a—n+1 (x>a),

(Dp_f)(x) = (=1)"DR(I;= %) (x)

=Nt f(z)dz
*W—Tﬂﬁ et @<b)

where n = [o] + 1 and [} means the integral part of c. Here D" is the usual deriva-
tive of order ~. In particular, when & = n € N, then

Do+ N (x) = (D)_f)(x) = F(n),
(Do f)(x) =Dif(x), (Dy f)(x) = (=1)"D"f(x).

The fractional Riemann-Lioville differentiation of the power functions (x — a)ﬂ
and (b— x)ﬁ yields power functions of the same form:
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rpg+1)

DY (x—a)f = m(x_a)ﬂ—a’
DR (62 = b 6=,

where B > —1 and « > 0. In particular, if B =0 and « > 0, then the fractional
Riemann-Liouville derivatives of a constant C are not equal to zero:

Dg—#—c = (x_a)—av

1
I'a+1)
1

D¢ C=———nr
b-C T'{o+1)

(b—x)"%

On the other hand, for k = 1,2, ..., [a] + 1, we have
D& (x—a)* k=0, D (b—x)**=0.

The equality
(DZ+)(x) =0
is valid if and only if,

n
f =Y Clx—a)®**,
k=1
where n = [a] + 1 and Cy are real arbitrary constants. The equation
(Dp_f)(x) =0

is satisfied if and only if,

n

f0) =Y Gb—-xn*",

k=1

where n = [a] + 1 and C;, are real arbitrary constants.

1.2.2 Fractional Caputo derivatives

The fractional Caputo derivatives ¢DZ, and ©D{_ are defined for functions for
which the Riemann-Liouville derivatives exists. Let & > O and let n be given by
n=a]+1foragN,andn=o for @ € N. If o €N, then the fractional Caputo
derivatives is defined by the equations

(DEA)E) = WD) = s [ T
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(CDg_f)(x) = (—l)n(lg:aD"f)(x) — r(—])" Kbﬁ Dgf(z)

(=) Ji “le— e
where n =[] + 1. If @ = n € N, then
(“DEN® =DLf(),  (DE ) = (—1)"Drf(x).

If o € N and n = [a] + 1, then fractional Caputo derivatives coincide with the frac-
tional Riemann-Liouville derivatives in the following cases:

(“DEf)(x) = (DE, f)(),

if
f@)=(Df) (@)= = (D" 'f)(a) =0,
and
(“DE_£)(x) = (D f)(x),
if

fB)=(Df)) = - = (D" f)(B) = 0.

It can be directly verified that the fractional Caputo differentiation of the power
functions (x — a)B and (b — x)P yields power functions of the form

o __TrB+1
Pt = Fa g
rg+1)
'la+B+1)

(x - a)ﬁ_aa

“DF (b-x)P = (b—x)P-e,

where 8 > —1 and & > 0. In particular, if B =0 and @ > 0, then the fractional
Caputo derivatives of a constant C are equal to zero:

‘pr.c=0, °DZ C=o0.
Fork=0,1,2,....n—1,
CDg‘+(x~ a)k =0, DY (b—x)*=0.

The Mittag-Leffler function E4[A (x — a)®] is invariant with respect to the Caputo
derivatives “DZ, ,

D, EalA (x—a)%) = AEq[A (x— a)),

but it is not the case for the Caputo derivative CDg‘_.
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1.2.3 Fractional Liouville derivatives
Let us define the fractional Liouville derivatives on the whole real axis R. The frac-

tional Liouville derivatives DY and D% of order & > 0 are defined (Kilbas et al.,
2006) by

!

(DEF)(x) D"(I"‘“)( )

f(2)dz

F(n— c?x”/ (x —z)a—n+1’

(D2f)(x) = (=1)"DR{E ) (x)
(=" 9" = flz)dz
/ (z

T T—a)dx ) —x)a-nrl?

where n = [&] + 1 and [o] means the integral part of ¢. Here D} is the usual deriva-
tive of order n. In particular, when @ = n € N, then

(D$.)(x) = (PLA) = F(),
(DLF)(x) =Dif(x), (D) (x) = (-1)"Df(x).
If f(x) is an integrable function and 8 > o > 1, then
(DIZf)(x) = f(x),

(D28 £y (x) = (8% ) (),
(DEDEf)(x) = (£1HDE ) (x).

If a > 0, then the following relations hold:

(FDLf) k) = (Fik)*(F f)(k),

where
(Fik)® = |k|* exp{Lomi sgn (x)/2}.

Here .% is the Fourier transform.

1.2.4 Interpretation of equations with fractional derivatives

To describe the physical interpretation of equations with fractional derivatives and
integrals with respect to time, we consider the memory effects and limiting cases
widely used in physics: (1) the absence of the memory; (2) the complete memory;
(3) the power-like memory.
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Let us consider the evolution of a dynamical system in which some quantity F(f)
is related to another quantity f(f) through a memory function M({z):

F(r) = /O’M(t~1)f(r)dr. (1.1

Equation (1.1) means that the value F(r) is related with f(z) by the convolution
operation

F(t) =M(t) = f(¢).

Equation (1.1) is a typical non-Markovian equation obtained in studying the systems
coupled to an environment, with environmental degrees of freedom being averaged.
Let us consider special cases of Eq. (1.1).

(1) For a system without memory, we have the Markov processes, and the time
dependence of the memory function is

M(t—1)=6(t — 1), (1.2)

where 6(t — T) is the Dirac delta-function. The absence of the memory means that
the function F(¢) is defined by f(z) at the only instant ¢. For this limiting case, the
system loses all its states except for one with infinitely high density. Using (1.1) and
(1.2), we have

t
F(1) :/0 8(t— ) f(t)dt = £(1). (1.3)
The expression (1.3) corresponds to the process with complete absence of mem-
ory. This process relates all subsequent states to previous states through the single
current state at each time ¢.

(2) If memory effects are introduced into the system the delta-function turns into
some function, with the time interval during which f(¢) affects on the function F(z).
Let M(z) be the step function

M(i-1)=1"}, (0<t<1t);
M(i-1)=0, (1>1)

The factor ¢! is chosen to get normalization of the memory function to unity:

/OIM(T)dT: 1.

Then in the evolution process the system passes through all states continuously with-
out any loss. In this case,

Foy=; [ s,

and this corresponds to complete memory.
(3) The power-like memory function



