e e L T el0) L

NEEFITARE «
mESIE&EThIER

STABILITY, ASEISMIC AND
NONLINEAR ANALYSIS THEORIES
CESTEEL-STRUCTURES

— A X R ERNES

—Selected Papers of Prof. Shen Zu-Yan

B RKFEFHIIER

¥ 6 & 50 £ 4k & ka2



PRBLIRIGY KO0 R B2 I\ S5 K BF 52 50 Ji 4

To Honor Prof. Shen Zu-Yan for His 50 Years of Contributions to Steel Structure Engineering

WEHRE., NI 'ﬁiF%Eﬁ*ﬁEt@

——ﬂ:#ﬂfé#)’t
Stability, Aseismic

Selected Pape

oF rq@ S%n Zu Yan
ﬁﬁk#ﬂﬁfﬂ%

¥ Qg8 £ k& hn



EHBERFE (CIP) HIE

MamiE . HRSERESFEL/ FFRFER
TER. Jtx: PEBHRITI R, 2008
ISBN 978-7-112-07275-0

1. #- 1. AFR¥ERAIERE . OW%E
H-GHREE- CEQHNEW-TIRSH- T REOWLEH-
R E-EWati-SCE N. TU391-53

of [ A B 48 CIP B (2008)5 018091 &

CohAR e BERib o ) o T i R BRE A AR R R E N
SEFRMTIRI 80 M, AEWRMAWH A REEIE. §ERSHT R
BT, Ruesiomiie Rk TRER. M REHRE W R
s R A . AR SRR RN RS TR, FERR
20 ERLEAYBER SR, BREAFRIH B, -0
T e T R E R A U T R R P i) — B B RS RLR . RXAE
HETHEREHEHOHT . BENTEXRARRHRESS.

WERE: B

wERT: HITH

WERXN: HDF

MEHMBRE. ARSEEESTHER
— WA BRI U R
Stability, Aseismic and Nonlinear Analysis Theories of Steel Structures
————Selected Papers of Prof. Shen Zu-Yan
FFRFERATRE

o B sk 5Tk AR R R AT R E )
PR R BIE S
A6 5 T 8k A BN R T ER

*
FFA: 787 x 109222k 1/16 EN5K.43  F¥:1042 FF
2005 4E 5 AS—NR  20084F 6 H 55 _YENR]
E: 1000-2500 IF 5 fif: 75 .00 7T
ISBN 978-7-112-07275-0

(13229)
MARE ®BHgR
WA EP%E R BRI, AT FF A AbiR #
CHE B 4§85 100037)




52

BRAFAE “LREA” 0 ALARZIF, AARABFLALMHER, AFXF
FREEBAAEEERNETREMFLFLAS, TEZA I L EBRAFHRIRTLR
I KA T EMFRRGRTAE, A—AN &R BTk A & B AL MARA R F X
FREMFHEBEARGERER. AAL Y KBRERFRFHIREK, SEFROHK
F (AEMELER) . #FFFARNNER. RERERAFAERKRZIN, YHEISEH
F. M. SEFORRBERARK, ARSI HHARAREEGIRS T I/HA, &
FUHFEARTRTAFKREFA, T LARGHE, TRTRAFRFSERFOLRHE
Y, AL FEE, RWEE, K+o8mk, RELEANLS ARG RIEHES, 2
Rk RGBT, FIB, R ALK AR S5 M AR R 5 @ AT AR 8T kR T RS AL

505k, AAEEGCHERMRAKTE, RETFANHFRAR. AEELH
WARAEALEFEAFRRABA 202 REXIEAAB NG LEAMMARL, LARX 300 4
B, BIREAL 20, IBPEBOEREHALGAL. AEE 1L A, RAREFE
FEMBRF LA, X ERSATBARTAALEALHARLAGHRL 80 &,
AEFAMEMAHREER, HERSEHSNAEHEL, RELSHINERR TEK
B, HBOREHEERNT EREGRBRAERTE, ARKELEMEEGEZREIHE
., XEFRARGBFRREZELRE T XBERNEMHT LA LR ARG EH R FBRA
P, AVTERSHERLARFALHIEERMETEL TR, AR, EALEGFR
T, AFXFREHIHAALCLIEFEIHAEL, ALARIER, TREMAAR. B
LHERAEFARBETAABEG LGRELRE, EARLLEAEXGY R, L
AAIAIBRHXEFAGLMETES TR, LEESE_BRELEBZHFEREAIEZEA
+LEFERLIEATLREERS I, ARBE, AALRAREHIBRERAIRS
YRR LERNEGLAPEM SN IRFHENREL, AHFHRER 2] L
BEAABRAFTEABFERANARPRERF S ORFT REFOAR.

50 %k, MALFEFTE, AR, HEFTA, MEXT, RAFXFH KL
W, RAKRATAFAECERXEOAL. REFEENEHET. RAFXFPERE
89 4E R A AR AR 4 |

FCAUR AL K R G R, ARG AR AR

A AR 3k 0 I 9 B K
o A K

st

2004 4£ 10 A



H =

sy MEMBERERR

1. Analysis of Initially Crooked, End Réstrained Steel Columing osssaresisaseniosiocived, 3
3. Nonlinear Stability Analysis of Steel Members by Finite Element Method ~ -+-+++ 32
4. Interaction of Local and Overall Instability of Compressed Box Columns -+-** 48
. WA TR RBERBBERTERABOTR 65
6. F‘ZEE‘}E&E%EEF*&B&E}&E oo dhe welnior o 5o sis's wowiinssieeisais suei J 4
1. RAER Y AT - itk
8. MR MRRAR S - AR R D B RS BFRLE . 90
o i RN B .5, 5.05. 50 5 L B AL 101
10. SFFLIT KT K HR 15MnVNq%EﬂEEﬂ‘¢E%%B‘JET9? 8% .25 08 Je ARG B
11. X]‘ﬁ’ﬁﬁ%ﬁ*“ﬁ%’fﬁﬂﬂﬁﬁ%ﬁﬁ%ﬁ o WS SR H RN
12 ﬁ%ﬁ}ﬁﬁﬁ%ﬁ%ﬁmgmﬁmﬁ% LB A S H A RRANST2S
13. & ik E SRR ER - SEAdiang .- 185
14, B HRE AT B S B ALY B - kAR R R e 150
15. %ﬂ’é‘%#@*&l‘ﬁ%ﬁiﬁﬁﬁ%ﬁ%ﬁ@ T R T R R R TR T Seee 161
g-ms BEFNEREABINRBERNITEL

16. Spatial Hysteretic Model and Elasto-Plastic Stiffness of Steel Columns «:++++* 5
17. 2 XS s BRI BT -v oo eee e SeakTg
18, 25 [ GRE B M YR GRAE AP o vereesmsessessesse st eees 198
19, 25 (ISR AE SR M B BB RERAGE - voeve e sesse e sse s ses st 207
00, TMESE A THELE M0 = B B HERR BRARER AT BIGE -ovvvveeveesonmesenmes s 216
91, 75 AR LR LS MY T I ML RS B IR A BB, oo vevveeresmmsmmemm e e 226
02, ZBUPERKY B RAELE BT o vevesesesseesom s 235
23. RS FIIME T AIAL BB A HTREED ovvveereeessenmmmmnmms s e 240
24, BIEZRS R 5 HBIEF MG — IR ATELIE -ooeeererrrrrmeeeeeees 246
25. An Experiment-based Cumulative Damage Mechanics Model of Steel Under

Cyclic Loading =+«eeseee* eeeee 255
26. A Hysteresis Model For Plane Steel Members With Damage Cumulation

Effects e e e s S EIN R SHN s se g n e wene wwisass 065
21. iua@m#%mﬁﬁs?w& Ty T— . 272



28.
29.

30.

31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

48.
49.
50.
51.
52.
53.
54.
55.
56.

57.
58.
59.

A Synthetic Discrete Method for Analyzing the Elasto-Plastic Seismic

Response of Tall Steel Framed-Tube Systems ««++-zeec=*
Analysis of Nonlinear Behavior of Steel Frames under Local Fire
Conditions =+ses=ee see
%%ﬁ%?ﬂ%%ﬁﬁﬁﬂ@i%ﬁﬂ&ﬁﬁmmﬁ&

5 M P TR BRAE R T 4 4 AR R 45 R BB AR AL -

B IR T 0 32 FE AR 1 B AR BRAR R S »-e o

PHEZR 5B KRB IR BT o oo

gy MELZUOBINREERR

Stability of Single Layer Reticulated Shells =:-:+-+«

Improvements on the Arc-Length-Type Method ««seeeeeseetersenenanessnnessnene
2R AE B A HT R R AR BUE T B K TR B AR B <o vemreseesessesen s e
W 5 A 4 3 5 T BB T B AR BRI B IR B e veeeem e s s snsnse st
M%%mﬁﬁ*ﬁﬁﬁ&ﬁ%m&¥ﬁ%%m%&*%@m~mmm~

KRB AA T MR — AL BT AR BRI B

B hak AE 45 M S B R 8 4 P R LA -

ST RAT G54 LA SR R S W i — R R T % -

K BEHE M5 ﬁﬁ%%ﬁﬁﬁﬁﬂ%&ﬂ?ﬁﬁ
M%%%%ﬁwﬁﬁﬁﬁﬁ%%%m N
R P ST BB R IR R BT -

Arch-Supported Reticulated Shell Structures and Their Static Mechanical

Behaviour :----

ﬁﬂiﬁﬁmﬁwﬁﬂﬁﬁﬁ%%%?%%&*

EwARTHAKERS N*M$Eﬁﬂm¥Wﬁﬁﬁ%ﬁﬁ sensens

35 S P I 7 454 30 0 4047 TR LA -
ﬁ%%#mﬁﬁﬁwﬁﬁ%ﬁﬂﬁﬁﬂﬁﬁm
FX&@&%%E@ﬁ%%@@*%mmmm
B3 B A M A T OB IR AT
I B X 05 4 3 R BRI e
R /1R PR S B BT GE oo

Shaking Table Tests of Two Shallow Reticulated Shells +eeseeeeeeeececeeeceees

U MEHNEEBLTPTRRFEHNRBMEBLEIHF

4048 3 A SR BE T AT e ree e
ATHBILZWNEN ANBRETRE o
BEFENABRREABRATE -

e 279

-+ 286

seses 295
-+ 303
.+ 310

coeee 316
-+ 320

g aga 331
5350
- 364

369

o e m 3 A
anerbg RN o n 381
ﬁ%ﬁﬁ*&ﬁﬁ%%5%&%%%%&%%%&&?%%mm""m'"m
g -ownd 01
-+ 406
-+ 413
sissmaii] 8

387

- 427
weees A48T

- 444

-+ 452
e sse S AGG
siess s B
-+ 469
-+ 475
-+ 481
.o 488

-+ 501
-+ 506
«eer 519



60.
61.
62.
63.
64.
65.
66.
67.

68.
69.
70.
e
72.
73.
74.
75.
76.
717.
78.
79,
80.

G AR T A AU B P BRIETE o eve oo s e
t.hanisdd. /28532

«+ 539
8547
+ 553
»+ 561
-+ 566
Beon 8571

F AR PG IRE - evevernrreeenneeenens
BERLCEYHASERREERNRRBRE -

S B R T A T 2 BRI IRIGTIFTE o vvvveevevmeemrnnenennnes

@ﬂ%ﬁﬁﬂﬁ%@ﬁﬁ%ﬁ%ﬂ%"~
ﬁﬂ”ﬁﬁﬂ%ﬁ%ﬁﬁﬁﬁ%
EIEMERRA AR -

LﬁﬁAﬁA%ﬁ%E%%%Wﬁﬁﬁ*ﬁﬁﬁﬂ%

RS KEEMEXKESTER

UL REGH IR AT
BRI RS RO T

%ﬁ#WM$%ﬁﬁmmﬁﬁ
?N#mﬂﬁ#%ﬁﬁﬁﬂﬁﬁﬂﬁ
RE MG B IR T -

@%?Eﬁﬁ%%%ﬁﬁm&%F%MEﬁﬁ

ﬁ?#%ﬁﬁﬁm%?%ﬁ%lﬁﬁﬁﬁ
BETREHRIERB B - 8 R R R
AHAL P 75 G5 M AL 1R BT A A R G B PR RE -
AL I 78 25 1 B 3 S i 3 72 v 7 AR 4 -
Lﬁﬁﬁ@%ﬂ%ﬁﬂ&Rsz%ERﬁ%ﬂ%

WA RIS R2 WE SRR =R IR & RBHR -

525

583
»=:589
25597
-+ 603
585611
0617
- 1625
++ 1632
% -2 1640
-+ 645
+» 1653
=659
-+ 668



B— B>

MMt EEit



S e




1. Analysis of Initially Crooked, End
Restrained Steel Columns

Zu-Yan Shen and Le-Wu Luv

Synopsis

Abstract: A new and general method of analysis for steel columns, which can simulta-
neously take into account the effects of initial crookedness, end restraint, residual stress
and load eccentricity, has been developed. The method gives the complete load-deflection
relationship of a column, including both the ascending and descending branches. Unlike
most of the currently used methods, the basic required input is the stress-strain relation-
ships of the material, instead of some pre-determined moment-thrust-curvature relation-
ships for the cross sections. Application is first made to develop theoretical predictions for
some selected columns which were tested using either the geometrical alignment or the load
alignment procedure. It is shown that the latter tends to be stronger and gives a higher test
load. The results of two parametric studies, which included such variables as magnitude of
initial crookedness. amount of end restraint, pattern of residual stress distribution, and
axis of bending, are also presented. Certain conclusions wish regard to the relative impor-

tance of these variables are drawn.

Notation
A cross-sectional area v initial crookedness of column
E modulus of elasticity w deflection of column
e eccentricity y distance from centroidal axis
I moment of inertia z distance from end A
K effective length factor B ratio of eccentricity at end A to that at
L length of column end B
M bending moment ¢ strain
N normal force at section g slope of deflected column
P axial load A non-dimensional slenderness ratio
R rotational stiffness of end restraint o stress
r radius of gyration ¢  curvature
V  end reaction

1 Introduction

Among the various factors that affect the strength of a column in a framework,

the
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following are considered to be important: ( | ) initial crookedness, (i) end restraint,
(i) residual stress, and (iv) eccentricity of applied load. Past research has paid much
attention to the effects of initial crookedness and residual stress. A thorough study of all
these factors, however, is considered as essential in the development.of rational design
provisions for columns.

Figure 1 shows an initially crooked and end restrained column of length L. The
crookedness v varies with the distance z from the left-hand end. The modulus of elasticity
of the material is E. and the moment of inertia of the cross section is I. An eccentric load
P is applied with eccentricities e, and e», and produces deflection w. The stiffness of the
end restraints, which are represented by springs, are R, and Ry, and the restraining mo-
ments acting at the two ends are R0, and Ry, where . and 6 are the end rotations pro-
duced by the load P. For the numerical studies to be described later it has been found con-

venient to specify R, and R, nondimensionally in terms of EI/L of the column.

Fig.1 [Initially crooked, end restrained column

Consider first the case where the axial load is concentrically applied, that is, e.=
ey =0. Several possible load-deflection curves for the column are shown in Figure 2,
where v,, and w,, represent, respectively, the initial crookedness and deflection at the
mid-height. If the column is perfectly straight (v, =0) and without end restraint (R=
0), buckling will take place when the applied load reaches the tangent modulus load of a
pin-ended column. The behaviour of the column is represented by curve (a). The load e-

ventually reaches a maximum value at which the column fails by inelastic instability. If the

Initially straight column

No end restraint
Ry >R,

Um+ W

Fig. 2 Load-deflection behaviour of concentrically loaded column
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column has an initial crookedness vn, deflection wn will take place as soon as the first
load is applied and will increase continuously. This behaviour is shown as curve (b).
Failure of the column is again due to inelastic instability. but occurring at a reduced maxi-
mum load. This reduction is dependent on the magnitude of vm. When the column is par-
tially restrained at the ends (R=10), its load-deflection relationship is represented by
curve (¢) or (d). For sufficiently large values of R. the ultimate strength of the crooked
column can exceed that of the straight column.

Next, consider the case when the load is applied with an eccentricity e, equal at both
ends; that is, e.=e, =e (Figure 3). The column is initially crooked and unrestrained.
If the eccentricity e and the crookedness v, are on opposite sides of the straight line con-
necting the column ends (e=—e1), there will be a reduction in the column strength due
to the added moment Pe;. On the other hand, if e and v, are on the same side .(e= +
e1), the strength of the column may be enhanced by the moment Pei, which acts in the
direction opposite to that of the Pv moment. At a larger eccentricity, for example e=+
e2>>e1, the counteracting moment Pe; may be sufficient to force the column to deflect,
and eventually fail, in the direction opposite to the initial crookedness. This phenomenon
has been observed in previously reported column tests.

P

o =W

® § LY
~ ol
§

—(©m+Wn) 0 +(Um+Wm)

Fig. 3 Load-deflection behaviour of eccentrically loaded column

2 Method of analysis

A general method, which can take into account almost all the known factors affecting
column behaviour, has been developed to perform load-deflection analyses of columns.
The specific factors that are included in the development are:

( i) Initial crookedness

(ii ) End restraints

(i ) Residual stresses

(iv) Load eccentricities

(V) Variation in mechanical properties of material over cross section

(Vi) Stress-strain characteristics of material

(Vi) Loading, unloading and reloading of yielded fibres.



6 B—HS LR PR

Any pattern of residual stress distribution and any variation of initial crookedness a-
long the length of the column can be incorporated. The restraints and eccentricities may
be equal or unequal at the two ends. By allowing a variation in the mechanical properties
over the cross section, it is possible to include hybrid columns or columns with non-uni-
form strength properties. Any type of stress-strain relationship, such as bi-linear, tri-
linear and non-linear can be included in the analysis. The bi-linear and tri-linear relation-
ships are commonly used for steel columns, with the option of including the effect of
strain hardening, A major difference between the method presented in this paper and
those employed previously in analysing crooked columns or beam-columns is that it does
not use any pre-determined moment-thrust-curvature (M-P-$) curves in the integration
process. The basic input is the stress-strain relationship and the necessary M-P-$ relation-
ships are generated internally as needed. The stress history of all the elements in a cross
section is carefully followed, and any occurrence of unloading or reloading of the yielded
elements can be detected and its effect is included in the generation of the M-P-¢ relation-
ships. The method makes no assumption with regard to the shape of the initial crooked-
ness or of the deflected column under load. The analysis gives both the ascending and de-
scending branches of the load-deflection curve.

The ascending branch of the curve is obtained by calculating the deflections for a se-
ries of successively increasing loads, at an interval of 0. 1Py, where Py is the axial yield
load of the column. At each load, the deflected shape of the column is determined by an
iterative numerical integration procedure. After several load increments, the trial load
will eventually exceed the maximum load that the column can sustain. This is indicated by
failure of the iterative procedure to produce a deflected configuration, which is compatible
with the prescribed boundary conditions of the column. When this happens, the calcula-
tion is returned to the last trial load, for which a compatible deflection has been found. A
new set of calculations, starting with this load and using an increment of 0. 01P,, is then
carried out. Once again the successive calculations eventually will show a stable load (be-
low the maximum), and an unstable load (above the maximum), with a difference of
0.01Py. This means the stable load is now within 0. 01Py of the maximum load. The en-
tire process is repeated again with the size of the load increment reduced to 0. 001Py and e-
ventually to 0. 0001P,.

To obtain the load-deflection curve of the column beyond the maximum load, the
same method can still be applied except that the analysis must now be performed by using
deflection increments. In actual calculations, however, it has been found to be more con-
venient to use increments of end rotation. For each selected end rotation, an equilibrium
load is found using the same iterative procedure,

Referring to the column shown in Figure 1, the equations of equilibrium for any sec-
tion located at a distance z from the left end are:

M=P(e.+v+w) —R,6,—V, 2 @))
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and
N=P (2
in which M and N are, respectively, the bending moment and axial force acting on the
section, and V. the reaction at end A. This reaction is given by
Vo=[Pe.(1—p) — (Ra6.—Ru6:) 1/L (&)
in which B is the eccentricity ratio, ey/e.. Equilibrium requires that M and N be equal to
the internal resisting moment and axial force of the section, which can be calculated by in-

tegrating the normal stress ¢ over the cross section (positive for compression). Thus,
M= oyda ®
and
N = oda (5)

in which v is the distance from dA to the centroidal axis of the cross section.
The stress o acting on the element dA is a function of the strain e
o= f(e) (6)
¢ consists of three parts
e=¢"+ePt+oy @)
in which & is the residual strain, ¢” the strain at the centroid or the axial strain (in the e-
lastic range e =P/AE), and $ the curvature. Equations 1 to 7 are the fundamental equa-
tions of the problem.
For a given load P, the deflected shape of the column, defined by the end rotations
0, and @ , is sought. A value of @, is first assumed (for columns with unsymmetrical re-
straints both @, and 6, must be assumed) and numerical integration is then carried out to
determine the deflected shape for the assumed 6, (Figure 4). The procedure adopted is
similar to the one developed previously for analysing laterally loaded beam-columns. M The
column is divided into many short segments and the deflection and the slope at the end
(nodal point) of each segment are calculated by numerical integration. Suppose that the
calculation has reached nodal point n—1, and the deflection w,—1, the slope ,—1, the
bending moment M,—1, the curvature $,—1 and the axial strain e?_; have all been calcu-
lated. For the next segment whose length is ALx», the following approximate formulae

can be used to calculate the deflection and the slope at point n

Wy =wa=1+0n—1 ALn— T o1y AL (®)
and
60 =0n—1 —$n—1/2) ALn 9
in which 0,— /2 is the curvature at the mid-point n—1 /2 of the segment. This curvature,
yet to be determined, is a function of the bending moment and the axial force acting at n—
1/2, which, according to equations 1 and 2, are given by
M-z =P(eatva— /2> Twa—1/2>) —Raba =Vaza—a/2> (10)
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and
N,—qsy=P (11)
The deflection at n—1/2 is
Al 1 AL \?
Wn—(1/2) = Wn—1 +0,.—1T— : $u—1/2) (T) (12)

Substituting equation 12 into equation 10 results in the following expression for $,—(1/2)

4 — Heatvaq/p twa-1+6,-1(ALL/2) — [(Ruba+Viza—/2) /P1— (M- 12 /P
n—(l/Z) [(AL,,)Z/ZJ

(13)

n

Ra

Fig. 4 Segment of a deflected column

ALp

It is apparent from equations 10 to 13 that a direct solution of $,—(1/2) is not possible,
and an iterative procedure must therefore be devised. Trial values of $u—c1/2) and b |,
are first assumed (convenient trial values would be the known $,—1 and €2_; from the pre-
viously-completed calculations) and the total strain e at any point in the cross section is
calculated from equation 7 and the corresponding stress ¢ from equation 6. With ¢ known,
equation 4 can then be used to calculate the bending moment M,—(1/5y. Because of the
complex patterns of residual strain present in most structural shapes, the required integra-
tion of equation 4 is best performed numerically by subdividing the cross section into a
large number of small elements. Each element is assumed to have a uniform residual strain
e" and total strain e. The stress g; acting on each element with an area of AA; is deter-

mined from equation 6 for the total strain ¢j. Equation 4 now assumes the following form
M= >5,y;AA; (14)
j

which can be applied to calculate the desired bending moment at M,—(1/5y. Substitution of
M,—q/2) into equation 13 gives a new value of #.—(1/2) which is to be compared with the as-
sumed $,—(1/2). If the two values do not agree, the above process must be repeated. Sat-
isfactory agreement is reached if the assumed and calculated values differ by less than 0. 5
percent. The $,—(1/7) value thus determined satisfies equations 10 and 13. It should be re-
membered that the axial strain €h—1/2y was also assumed at the beginning of the iterative
calculation. This strain is related to the axial force Nau—/2) which must satisfy equation
11. Tt is, therefore, necessary to check if the stresses oj associated with the $,— (/2 sat-

isfy equation 11. This can be done by substituting the ¢; values into equation 15, whose
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form is

N = Ea,‘AAj (15)
J

If Nu—c1/2) is not equal to the axial force P as required by equation 11, a new €h_(1/2) must
be selected and the process of calculation is repeated (including the iterative calculation
performed previously to obtain $,—(1/2)). Satisfactory convergence is obtained if the calcu-
lated Na—c1/2) is within 0. 00001Py of the axial load. When this occurs, the search for the
correct values of $,—1/2 and €2 /5 is complete, and the corresponding $,-/2) can be
substituted into equations 8 and 9 to determine w, and 8, at nodal point n. This completes
all the required calculations for the segment AL,.

The same calculation is repeated for all the remaining segments. When the calculation
for the last segment is completed, the result, if not equal to zero, may show a vertical
displacement wy, at end B. A non-zero wy indicates that a new 6, should be tried. It is
convenient to select the new 6, to be equal to the initial §, minus wy /L if wy is a downward
displacement, or @, plus wy/L if wy is an upward displacement. The entire integration is
then repeated, and another wy is found. Using the two wyp values and the corresponding
0, values, a third 6, can be selected by linear interpolation and the integration again repeat-
ed. Further repetitions of the process may be required, each time resulting in an improved
@.. The correct 6, and therefore the correct deflected shape of the column is found if wy /L
at the end of the calculations is less than 1/1000 of the assumed 6a.

A comprehensive computer program for performing all the numerical calculations with
the various convergence criteria stated previously has been prepared. In this program, the
column may be divided into any number of equal or unequal segments. For the study pres-
ented in this paper the columns have been divided into seven equal segments with eight

nodal points.
3 Analytical prediction of test column behaviour

The method is first applied to generate the load-deflection curves of some pin-ended
columns which were tested in previous studies at Lehigh University. The purpose of this
work is twofold: (| ) to obtain experimental verification of the analysis method, and
(i) to develop analytical predictions for selected columns whose behaviour has not previ-
ously been substantiated by theory. The columns selected had varying amounts of initial
crookedness which were carefully measured before testing. Included are: two concentric-
ally loaded columns, one eccentrically loaded column with small positive eccentricity, and
one eccentrically loaded column with large positive eccentricity.

The concentrically loaded columns are selected from a group of heavy European col-
umns which were tested as part of a co-operative study with the European Convention for
Constructional Steelwork (ECCS). The procedure adopted for these tests followed the

ECCS recommendations which require the test column to be ¢geometrically aligned’ with



10 : R WS RS

respect to the centreline of the testing machine. The test load was applied continuously to
the column at a prescribed rate, and the ‘dynamic’ load-deflection curve was recorded au-
tomatically as the test progressed. The results of the tests have already been published, ?’
but no attempt has yet been made to provide theoretical predictions. Figure 5 shows com-
parisons of the analytical and experimental load-deflection curves of the two HEM 340 col-
umns manufactured in Italy. All the analyses are based on the dynamic stress-strain char-
acteristics determined from the tension coupon tests and the measured residual stresses and
initial crookedness. For each test column, two analyses have been performed: one in-
cludes the effect of strain hardening (dashed line) and the other neglects it (dot-dashed
line). When the two analyses gave essentially the same results, the one that includes the
effect of strain hardening is shown. For the two columns the analytical predictions show
remarkably good agreement with the test results. For the column with L/r =50, the
effect of strain hardening becomes quite pronounced after the attainment of the maximum
load. On the other hand, strain hardening appears to have very little effect on the behav-
iour of the column with L/r=95 because the two analyses gave almost the same load-de-
flection curve. This study also shows that it is possible to develop the dynamic load-de-
flection relationship of a test column by using the dynamic mechanical properties if the strain

rate in the column test is not too different from the strain rate specified in the coupon test.
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Fig.5 Analytical and experimental load-deflection curves of concentrically loaded columns

An example of an eccentrically loaded column with small positive eccentricity is shown
in Figure 6. The column is a welded H column with A514 steel flanges and A36 steel web
and was included in a pilot programme studying hybrid columns. ¥ Before testing, the
column was aligned under load by the so-called ‘old Lehigh method’. The goal of the a-
lignment was to achieve a reasonably uniform strain distribution in the column during the
early stages of testing. If the column is initially crooked, in order to achieve uniform dis-
tribution, the alignment load as well as the test load must be applied eccentrically. For
the selected column, the results given in Figure 6 show that the strength of the column
was increased from 0. 652 Py for e/L=0 to 0. 745P, for ¢/L=0. 000469, which is the value

of eccentricity adopted in the calculation. This value of e has been determined in such a



