Kenneth Baldwin
[2£] Trevor Misfeldt &
Andrew Gray

HE #F

- FEIRNICHRERELF

TR A TSRS, :
SRRERERER

BExEmet 0y CEEESE

{ Tunivg

The Elements of C# Style

CHEPEPURS ot)

Kenneth Baldwin
[%£] Trevor Misfeldt =
Andrew Gray

HE &

A BB R A
sle e

EHLEERE (CIP) H#

C# SRR NHE: JEDOWIR / (%) SR (Baldwin, K.),
(%) #E (Gray, A.), () KEB/RE (Misfeldt,
T) &; B#EEF . IR AREBBHRE, 2008.10

(BRBFFRITAS

ISBN 978-7-115-18438-2

1. C N Ol @Ke @ M..CIEF-B
FiE -3, B V. TP312 '

A B R CIPEE % (2008) 550963965

NERE

ABR—BAZER. /MR CH REMA. % C ST
WERB R, @8, 8. ®it. REUREEAS, RBHH BT
REGHES THR. B, ¥R, TA% FL ey o8B,

ERERTHER CHEFR.

EREBFEHAD
CHREMRE (&Y)
¢ E [2] Kenneth Baldwin, Andrew Gray, Trevor Misfeldt
%3 o &
FHEHRE BROG

¢ ARBPEHBALERRIT iR Es BEsies
R4 100061 HFREF 315@ptpress.com.cn
Pk hitp://www.ptpress.com.cn

LR ZHEN RIS BR 4y B ELRY
& F4: 850X1168 1/32
Engk: 7.25
EH: 268FF 20084E 10 A58 13K
Ep¥: 1-—4 000/ 20084 10 A4 1 RENRI

EENESFRRICE BF: 01-2007-5287%
ISBN 978-7-115-18438-2/TP

EHB: 29.007T
EEREFL: (010)88593802 EDERMAL:: (010)67129223
BB (01067171154

ht # = BA

The Elements of C# Style by Kenneth Baldwin, Andrew Gray and Trevor
Misfeldt, ISBN 978-0521671590 first published by Cambridge University
Press in 2006. All rights reserved.

This simplified Chinese edition for the People’s Republic of China is
published by arrangement with the Press Syndicate of the University of
Cambridge, Cambridge, United Kingdom.

© Cambridge University Press & Posts & Telecom Press 2008.

. 25 B A BRH B RO R SR K2 R SR AR . A BAEATER 4
ZXFRB A, REHREBEFT, AMEAEATAHR. TREBE.

Introduction

style: 1b. the shadow-producing pin of a sundial.
2c. the custom or plan followed in spelling,
capitalization, punctuation, and typographic
arrangement and display.
—Webster 5 New Collegiate Dictionary

The syntax of a programming language tells you what code it is possible to
write — what machines will understand. Style tells you what you ought to
write—what humans reading the code will understand. Code written with a
consistent, simple style is maintainable, robust, and contains fewer bugs. Code
written with no regard to style contains more bugs, and may simply be thrown
away and rewritten rather than maintained.

Attending to style is particularly important when developing as a team.
Consistent style facilitates communication, because it enables team members
to read and understand each other’s work more easily. In our experience, the
value of consistent programming style grows exponentially with the number
of people working with the code. -

Our favorite style guides are classics: Strunk and Whlte s The Elements oj,
Style® and Kemighan and Plauger’s The Elements of Programming Style.”
These small books work because they are simple: a list of rules, each
containing a brief explanation and examples of correct, and sometimes
incorrect, use. We followed the same pattern in this book. This simple
treatment—a series of rules—enabled us to keep this book short and easy to
understand.

@ Strunk, William Jr., and E. B. White. The Elements of Style, Fourth Edition. (Allyn &
Bacon, 2000).

@ Kernighan, Brian and P. J. Plauger. The Elements of Programming Style. New York:
McGraw-Hill, 1988).

it

El

R (style) : 1b. B & EF$ =4 69484t

2¢c. éﬁ'g\ k']‘g\ *@‘ﬁwf@%\ %Fh‘&%"f&ﬁ"/ﬁiiﬁ?
8 3 IR F ik,
— (P RATRKFIAHLY

GIRE S IEEE R U S H A MAE—LES T LB KA
. T R U R B e S B R A —HEAUB RN W LAER R Y
A RA—3. WRXERSOABTES. @, o080 TR
BUE—BREHRBEEELHRE, REFEEREETAEED .

BT R, BORBRAGEEEE. —BHRBREE B TEE,
B i FIBAR R A5 MR A RIS . URITSRKE,
— BRI RIS B 5 AR 0 T R SR S

B ZL2 AN EERKIETE : StrunkFI White¥) The Elements of
Style®, T4 KemighanFIPlaugerff]The Elements of Programming Style®, X%
ANBIREH, BABIRES: REFIMMN, F4EMNGERH LRSI
BAERAEGY, GrHC2mMERne 7. ROTXABBUaEEH. X
R AE X — RN —RIM—EE R E R 5 ER.

@© Strunk, William Jr., and E. B. White. The Elements of Style, Fourth Edition. (Allyn &
Bacon, 2000).

@ Kemighan, Brian and P. J. Plauger. The Elements of Programming Style. (New York:
McGraw-Hill, 1988). ’

2 Introduction

Some of the advice that you read here may seem obvious to you, particularly
if you’ve been writing code for a long time. Others may disagree with some of
our specific suggestions about formatting or indentation. The most important
thing is consistency. What we’ve tried to do here is distill many decades of
development experience into an easily accessible set of heuristics that
encourage consistent coding practice (and hopefully help you avoid some
coding traps along the way). The idea is to provide a clear standard to follow
so programmers .can spend their time on solving the problems of their
customers instead of worrying about things like naming conventions and
formatting.

The guidelines in this book complement the official NET design guidelines in
the ECMA C# specification®and Krzysztof Cwalina and Brad Abrams’
excellent Framework Design Guidelines.® This book extends those guidelines
. to internal implementation and coding style.

Disclaimer

We have dramatically simplified the code samples used in this book to
highlight the concepts related to a particular rule. In many cases, these
code fragments do not conform to conventions described elsewhere in this
book—they lack real documentation and fail to meet certain minimum
declarative requirements. Do not treat these fragments as definitive examples
of real code!

Acknowledgments

Books like these are necessarily a team effort. Major contributions came from
the original authors of The Elements of Java Style: Al Vermeulen, Scott
Ambler, Greg Bumgardner, Eldon Metz, Trevor Misfeldt, Jim Shur, and
Patrick Thompson, and the original authors of The Elements of C++ Style:
Trevor Misfeldt, Greg Bumgardner, and Andrew Gray. Both of those books
have some roots in “C++ Design, Implementation, and Style Guide,” written
by Tom Keffer, the “Rogue Wave Java Style Guide,” and the “Ambysoft Inc.
Coding Standards for Java,” documents to which Jeremy Smith, Tom Keffer,
Wayne Gramlich, Pete Handsman, and Cris Perdue all contributed.

(O ECMA International, Standard ECMA-334: “C# Language Specification,” 3rd Edition,
June 200S. http://www.ecma-international.org/publications/standards/E¢ma-334.htm.

@ Cwalina, Krzysztof and Brad Abrams. Framework Design Guidelines: Conventions,
Idioms, and Patterns for Reusable .NET Libraries. Addison-Wesley, 2005. ISBN
0321246756.

5l

)

3

g (RHECHESEMEE) K, ABFFIHK—&
BYMIFRET S RK. EF —EEE T RARBRISCTRBEE R
MEEEREN. HRERNR . RIVINDEHRTFITRERRIFK
—EREBEAN. BRI—BABLERABSHERN B RANE—
ERGREREDE. 4 BER M —FOMTIARAE, AR R AR R
FERFREFAEL, MERERTRL4%E. EELZRNIE.

A HFIHBIESEMNECMA CHITEH M EXNETH WS UK
Krzysztof Cwalinaf1Brad AbramsfI{55 3 1k Framework Design Guidelines®
—HERA R, 25K EREFRENG R PSS OGRS XA .

=)

RATK A BT BB R BIEAT TR, 2B RARIK
MRBE . XA W2 ANEA T Bk i s g u—e1]
GDSCOR B, A ERMREFIR TR RIEXLE W 2R LR
B!

it

IR E 02 A SRR . EETERK B T The Elements of Java
Style—F5BI1E& 1], BNAI Vermeulen. Scott Ambler. Greg Bumgardner.
Eldon Metz. Trevor Misfeldt. Jim Shur#Patrick Thompson, LA The
Elements of C++ Style—15/#1#E% , BlTrevor Misfeldt. Greg Bumgardner
FI Andrew Gray . X P & 15 #8 ¥& B Tom Keffer ff & C++ Design,
Implementation, and Style Guide—¥5, Ul JJeremy Smith. Tom Keffer,
Wayne Gramlich. Pete HandsmanFICris Perdue3t [F1%% 5 I Rogue Wave Java
GuideFAmbysoft Inc. Coding Standards for Java3lks.

@ ECMA International, Standard ECMA-334: “C# Language Specification.” 3rd Edition,
June 2005. http://www.ecma-international.org/publications/standards/Ecma-334.htm.

® Cwalina, Krzysztof and Brad Abrams. Framework Design Guidelines: Conventions,
Idioms, and Patterns for Reusable .NET Libraries. Addison-Wesley, 2005. ISBN
0321246756, (FF3CAR (NETHEUHHAE), ARHEBHHARAE, 2006)

4 Introduction

Thanks also to the reviewers who provided valuable feedback on drafts of this
book, particularly Brad Abrams, Krzysztof Cwalina, and Mark Vulfson of
Microsoft Corporation; Mike Gunderloy of Larkware; and Michael Gerfen of
Evolution Software Design.

This book would certainly never have happened without the help and
encouragement of the folks at Cambridge University Press, particularly
Jessica Farris and Lauren Cowles, who kept us on track throughout the
writing and publication process.

7l

L1

5

BEKGHAABYRR N EHE N FERHEN], 572 Brad Abrams.
Krzysztof Cwalina F1 4% #k /A 5] i Mark Vulfson. Larkware 2 7] i Mike
GunderloyFEvolution Software Design’A 5] f{/Michael Gerfen.

R SIBF K HRRAL R R # BRI, A 54 AN AT B 1) 1

% 71| B8 Jessica Farris#fllLauren Cowles, MbfiIZERENE/ER HRIRE ik
BAVRFEAHE -

Preface

As commercial developers of software components, we always strive to have
good, consistent style throughout our code. Since source code is usually
included in our final products, our users often study our code to learn not just
how the components work, but also how to write good software.

This fact ultimately led to the creation of The Elements of Java Style® and
The Elements of C++ Style® The positive reception of those books, coupled
with recurring questions about C# and .NET style issues, resulted in this
edition for C#.

If you’ve read the earlier books in this series (or even if you haven’t), much of
the advice in this book will probably be familiar. This is deliberate, as many of
the programming principles described are timeless and valid across progr-
amming languages. However, the content has been reworked and expanded
here to address the unique characteristics of the C# language.

Audience

We wrote this book for anyone writing C# code, but especially for
programmers who are writing C# as part of a team. For a team to be effective,
everyone must be able to read and understand everyone else’s code. Having
consistent style conventions is a good first step!

This book is not intended to teach you C#, but rather it focuses on how C#
code can be written in order to maximize its effectiveness. We therefore
assume you are already familiar with C# and object-oriented programming.

@ Vermeulen, A, et al. The Elements of Java Style. (Cambridge, UK: Cambridge University
Press, 2000).

@ Misfeldt, Trevor, Greg Bumgardner, and Andrew Gray. The Elements of C++ Style.
(Cambridge, UK: Cambridge University Press, 2004).

it

Rl

ERBRBAGNTRE, RITARSHERDIEFRE. —
BEAM . HTRL=RTEESEHENE, FUAFEESHAR
TIRARE, AREATEIAGKIIENE, EXTEINAREITFH
B

X T T The Elements of Java Style®F1The Elements of C++ Style®
FAEBHEE. XFAARGREE WEATIEBERRXTCHAINETA,
BRI AL, XA B AR T XA CHAR A I I 1

ERRETEIARIIEFHNHAE, HURRINAHFHFESE
BHREEE. REFRAZH, EARPRIKFSmER TR
& EAREETPNER. 4%, RNEFEETARHMTTE,
LAIERECHIE 5 BB M

S POE

FHEATHECHBIIA, THEBLHANPRFECHEF A
— P HEAEBFEI, SNARLAREEEHEFIMANRL. #F
—BER R LR A RIEFHIFFEA !

FREBTHIRCH, MR EET MU THERABICHIE. B
BL, BAVEER CERMBCHE S FIH RXREKE.

@ Vermeulen, Al, ¢t al. The Elements of Java Style. (Cambridge, UK: Cambridge University
Press, 2000). (FEXXTHRIR (Javaf@f2RA), ARBReHARYE, 2008)

@ Misfeldt, Trevor, Greg Bumgardner, and Andrew Gray. The Elements of C++ Style.
(Cambridge, UK: Cambridge University Press, 2004). (ENARIR (CHEHBERMEY,
AT HIRAL, 2008)

General Principles

While it is important to write software that performs well, many other issues
should concern the professional developer. Good software gets the job done. But
great software, written with a consistent style, is predictable, robust,
maintainable, supportable, and extensible.

1. Adhere to the Style of the Original

When modifying existing software, your changes should follow the style of the
original code.® Do not introduce a new coding style in a modification, and do
not attempt to rewrite the old software just to make it match the new style. The
use of different styles within a single source file produces code that is more
difficult to read and comprehend. Rewriting old code simply to change its style
may result in the introduction of costly yet avoidable defects.

2. Adhere to the Principle of Least Astonishment

The Principle of Least Astonishment suggests you should avoid doing things
that would surprise other software developers. This implies that the means of
interaction and the behavior exhibited by your software must be predictable and
consistent,” and, if not, the documentation must clearly identify and justify any
unusual patterns of use or behavior.

To minimize the chances that anyone would encounter something surprising in

your software, you should emphasize the following characteristics in the design,
implementation, packaging, and documentation of your software:

@ Jim Karabatsos. “When does this document apply?” In “Visual Basic Programming
Standards.” (GUI Computing Ltd., 22 March 1996).

® George Brackett. “Class 6: Designing for Communication: Layout, Structure, Navigation
for Nets and Webs.” In “Course T525: Designing Educational Experiences for Networks
and Webs.”(Harvard Graduate School of Education, 26 August 1999).

L

— Mg R W

REWERITNREEAREE, BEUIFREBME TGS
o FEHIRAFRETE AT S, 15 UA—BRAR 5 R -F- AL BB B BT . 4
v ATER . AR AR R

1. RIEERARRE
BEA NGB RARS, NOEAE RIS RS . © B AESIA
R, BAEUS TYEFIRTMES B, £ MEAEIHS

FLEZMARRESEREEREE. ABRNBTESRER 4R
B AERE, SRR .

2. RS/ MR RN

T A7 A T R SRR S Ml Y T REAE KA R T R A R IR S
e XEWE, PHFRSRKESRAT AT U AR B R — B ©
MRFRIXHE, SCRIBLL TSI T A SR i AT A .

A T AR ATEE AR B i BB BT 0T REME, IR ARt
Mgt KBl FTEACRHSRIA BT R ~

A

@ Jim Karabatsos. “When does this document apply?” In “Visual Basic Programming
Standards.” (GUI Computing Ltd., 22 March 1996).

@ George Brackett. “Class 6: Designing for Communication: Layout, Structure, Navigation for
Nets and Webs.” “Course T525: Designing Educational Experiences for Networks and
Webs.”(Harvard Graduate School of Education, 26 August 1999).

2 1 General Principles

Simplicity Meet the expectations of your users with simple classes and
simple methods.

Clarity Ensure that each class, interface, method, variable, and object
has a clear purpose. Explain where, when, why, and how to use
each.

Completeness Provide the minimum functionality that any reasonable user
would expect to find and use. Create complete document-
ation; document all features and functionality.

Consistency Similar entities should look and behave the same; dissimilar
entities should look and behave differently. Create and apply
consistent standards whenever possible.

Robustness Provide predictable, documented behavior in response to
errors and exceptions. Do not hide errors and do not force
clients to detect errors.

3. Do It Right the First Time

Apply these rules to any code you write, not just code destined for production.
More often than not, some piece of prototype or experimental code will make
its way into a finished product, so you should anticipate this eventuality. Even if
your code never makes it into production, someone else may still have to read it.
Anyone who must look at your code will appreciate your professionalism and
foresight at having consistently applied these rules from the start.

4. Document Any Deviations

No standard is perfect and no standard is universally applicable. Sometimes you
will find yourself in a situation where you need to deviate from an established
standard. Regardless, strive for clarity and consistency.

Before you decide to ignore a rule, you should first make sure you understand
why the rule exists and what the consequences are if it is not applied. If you
decide you must violate a rule, then document why you have done so.

This is the prime directive.

5. Consider Using a Code-Checking Tool to Enforce Coding
Standards

A source code analysis tool enables you to check your code for compliance with

#F1%E — R 3

wet AR ERERLHE S .

B REAR, B0 k. RRAX SR EWR H .
B TR fTAL. IR EAT.

SERNE ROME— AN ER BRI M RN B Bl
SRR, HRFTERENIIEE.

—EM ARRUSSERISNIURAT O R AR], AN RSE A SMIANAT
ANEZANE . 2% AT BRA 52 I8 <P AR AR HE

i AP AR IREHR R AU B, SRR T
FICASH . NEREEIR, BABESER LRI
o

3. E—RERfxt

X HTE RIS MK AN, AR FER™MHMRG. RAERRR
HRAEZLLANBRE™RT, FUFRZRESEN. NEREKESS
FKHABEAEF, AARATRERE. EAEEFRIAEBEA, #
L MIREE LR BT AR Lo i 5% W2 BA 3R A FE ¥

4. ERAAERETH

BE+TETR. EE—UINRHE. FREaHREREAREIRMER
TE. LRI HESS R FFEWN—B.

FEPE BRERAMNZHT, WRRREHE H O THRRFMNFELZ
By, UERARAZRUETREER. mRRHREZEREEAN,
ER T AMHIRE.

KR —F A,
5. ZERRAREKRET RBFBRERDERE
TRABRRES T TARERBETR S RISRENBRESLER.

4 1 General Principles

coding standards and best practices. For example, FxCop® is a popular NET
code analysis tool that uses reflection, MSIL parsing, and callgraph analysis to
check for conformance to the NET Framework design guidelines. FxCop is
extensible, and can thus incorporate the particular coding standards used by
your own organization.

@ http://www.gotdotnet.com/team/fxcop/.

