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FOREWORD

Professor Zhou Yulin, a member of Chinese Academy of Sciences and chairman of
Chinese Society of Computational Mathematics, has ploughed and weeded industriously in
mathematics field for nearly half a century and gained plentiful achievements. This volume
of collected papers , selected by professor Zhouw himself , evidently shows his great academic
attainments in various areas of mathematical study.

Professor Zhou Yulin walked into the palace of mathematics research beginning with
the combinatorial topology, and did well in homology theory and homotopy theory. After
liberation, he went to the Soviet Union to study. The theory of partial differential equations
was chosen determinedly as his speciality because it is deemed to be more valuable in appli-
cation. He was expecting to use the knowledge fo economic construction for the new social-
ist China. During that period, he did a lot of significant works on the theory of nonlinear
parabolic equations and elliptic equations. In particular, the work on the filtration equation
cooperated with O.A.Oleinek et al., the mathematicians of the Soviet Union, is universally
acknowledged as initiative and classical study which is often quoted by domestic and over-
sea scholars. After returning to his countfy, professor Zhou Yulin was engaged not only in
research work but also in teaching and has educated a batch of high—level teachers and
researchers for theoretical research of partial differential equations.

In the early nineteen sixties, professor Zhou Yulin was under order to be transferred to
take part in the theoretical researches of Chinese nuclear weapons. For the prosperity of
our homeland, he had suddenly, which happened only in one night, to change his research
direction again and stepped his foot on a new jourriey in the scientific field which was com-
pletely new to him. The large scale scientific computing is one of the three sorts of methods
for contemporary scientific research, and also it is absolutely necessary and more important
for theoretical research of nuclear weapons. Professor Zhou Yulin took charge of the re-
search work on numerical simulation and fluid dynamics of nuclear weapons and made
great contributions to the development of Chinese nuclear weapons. Being engaged in large
scale scientific calculation over a long period, he raised a series of requirements to
computer s device from the view of scientific calculations. M oreover he carried out good
theoretical analysis. It has had great influence on the developments of Chinese computers.

In the last over ten years, the period of reform and opening, professor Zhou Yulin has
been devoting himself to scientific researches on the nonlinear partial differential equations
and their difference methods and has obtained a series of systematic and profound results.
Most of the equations he studied have very distinctive physical and applied background,
aud his research works have been paid close attention to by domestic and oversea mathe-
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maticians. Especially, in order to study the difference methods of nonlinear partial
differential equations, he developed the methods of discrete functional analysis which have
formed a new theoretical system of difference methods. His theory has broken down the
“line of demarcation between the theoretical studies of partial differential equations and the
difference schemes, and made them a unified entity. Therefore, this theory possesses its
originality.

Professor Zhou Yulin pursues his studies very rigorously and scrupulously. He gives
careful and deep consideration to every scholastic problem, and constantly improves it. He
i8 serious in science and seeks truth from facts. As a senior he is always tireless in teaching
and zealously advises younger scientists. And it is usual for him to work so hard that he
forgets food and sleep. On the way of getting along with people, he is a sincere and frank
man, and he distinguishes clearly between right and wrong; he is an upright man who never
flatters, and he hates evil as much as he hates an enemy. It is more than thirty years that I
know professor Zhou Yulin so that I often have chances to ask him for advice, to discuss
studies with him and to exchange ideas each other. As a result from his words and deeds 1
benefit a lot.

On the occasion that “ Selected Papers of Zhou Yulin” is published, I am told to write
the preface. As I look back to the scientific activities of professor Zhou Yulin in the past
more than forty years, the figure of an intellectual who has insisted on pursuing the combi-
nation of the development of sciences and the prosperity of the homeland for several ten
years as one day, appears vividly in front of my eyes. We heartily hope that professor Zhou

Yulin will make more remarkable scientific achievements for the prosperity of our country

Li De—yuan

June 20,1992
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On the Orientability of Differentiable Manifolds

SHIINGSHEN CHERN (Ffk & %) aND YUHLIN Jou (JE #i )

Abstract

The aim of this note is to give a simple way by which is decided the orientability or non-
orientability of some differentiable manifolds, namely, the Grassmann manifolds and the hyper-

quadrics in a real projective space. The method is based on a simple lemma.

1. A Lemma

We recall some definitions and notions of a differentiable manifold. A differentiable
manifold M is a connected Hausdorff space, whose neighborhoods are n-dimensional open
cells, such that the following further conditions are satisfied

1) There exists a finite or enumerable set of neighborhoods {U;}, which cover M. Each
U; is the topological map 6; of an open n-dimensional cell E™ defined by

le¥| <1,  k=1,---,n

If p € U;, the coordinates w@.) of 87! (p) are called the local coordinates of p, relative to Uj.
2)Ifp e U,'Ujl, the local coordinates z?i),w?j) of p relative to U;,U; are related by a

differentiable transformation
ok _ gk (o1 -
oo = @) k=1en
of class > m > 0, with non-vanishing Jacobian :

1
Az(y) - saly)

Ji- = 1 n
By o a2y)

# 0.

The set of neighborhoods {U;}, with the above conditions, is said to form a differentiable
structure of M, and M is said to be of dimension n and class > m.

Let 7 be a topological map of E™ onto itself of class > m. The map #; can be replaced
by 8;7 and the local coordinates wé‘i) of p € U; by the coordinates of (§;7)"*(p). Such-a
change of local coordinates is called an allowable change of local coordinates.

The allowable changes of local coordinates are divided into two classes, according to

the sign of the Jacobian. The neighborhood U;, the map 8;, and the class of allowable
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changes of local coordinates with positive (or negative) Jacobian are said to form an oriented
_neighborhood. Every U; has exactly two orientations.

M is called orientable, if the neighborhoods U; can be so oriented that at every point
p € U;U; the Jacobian J;; > 0. If this is not possible, M is called non-orientable.

With these preliminaries, the lemma we intend to prove can be stated as follows :

Lemma. If there are two (oriented) neighborhoods U, and Uy such that the Jacobian
does not keep a constant sign in the intersection U U,, then M 1s non-orientable. If the
Jacobian in UyUs, keep the same sign and if M — (Uy +Us) 1s a subpolyhedron of dimension
<n -2, then M is orientable.

Proof.  The first statement follows immediately from the definition. To prove the
second statement we notice that U; x U, is a regularly connected polyhedron, for which
orientability or non-orientability has a sense. The hypotheses then imply that U, + U, is

orientable, and the same is thus true of M.
2. The Grassmann Manifold

The Grassmann manifold, to be denoted by H(n, N), is the manifold of all n-dimensional
planes X through the origin 0 of an (n + N)-dimensional real Euclidean space E**¥. By
-adjoining the hyperplane at infinity to E"*" and taking the section of X by a projective
hyperplane not through 0, we can regard the manifold also as that of all the (n — 1)-
dimensional linear spaces in a projective space of n + N — 1 dimensions.

Theorem 1. H(n,N) is orientable if n + N is even, and non-orientable if n + N is
odd?].

Proof. We denote by e1,--- ,e,4n the coordinate vectors in E™"*V  and z1, - ,Tnyn
the coordinates. Take N coordinate vectors e;,,-- - ,e;, and consider the X which meet in 0

only, the linear space spanned by these N coordinate vectors. Such an X has the equations

"Ei‘,:z&iskwku 3:17"'7N1

where the summation is extended over the indices k # 4, --- ,iy All these X form a cell of
dimension nN, with ¢, i as local coordinates. It is clear that such cells form a covering of
H(n,N) and define a differentiable structure on H(n, N).

We take in particular the cells o,0! corresponding respe(;tively to the indices z; =
n+1l,ig =n+4+2,---,iy =n+Nand &3 = n,i3 = n+2,---,iy = n+ N. Then
H(n,N) — (0 4+ o') is a subpolyhedron of H(n, N) of dimension < nN — 2. It follows from
our lemma that H(n, N} is orientable or non-orientable, according as the Jacobian of the

transformation of local coordinates keeps the same sign or not in the intersection o - ol.

—_— 2 —



The equations of an X € ¢ are

Tni1 = )\llwl + -+ >‘1n$n,
LTntN = >\N1-T1 + -+ AN'n-’En-;

while those of an: X in o! are

=p112; F o F fin1 Tl F HinTntl,

Tn
Ty =P21Z1 + -+ Uon—1Tn—1 + fonTn+1,
Tp+N =UN1Z1 + - T UNn-1Tn—1 + LNnTn1-

In the intersection o - ¢! we have Ay, # 0, and the relations between the two systems of

local coordinates X\ and p are easily found to be

Ala 1
ﬂlaz'—ﬂw .uln:my a =1, yrn—1,
ﬂra:/\ra—g\—fL/\lg—7 ,U'T'n:ATn) 7-::2,-",”-

Al‘n >\1n

It remains to evaluate the Jacobian
__ 8()‘111"' ;)‘1117”7' 7)‘N1,”‘ u/\Nn)
3(#11,"’ yHin, -y UN1, " :/-LN'n)

A

and an easy computation gives
1
A= rwe
1n

This proves the theorem.

3. The Real Hyperquadrics in Projective Space

We denote by z;, -+, 2,41 the homogeneous coordinates of a real projective space of
dimension n, A real hyperquadric X is defined by an equation of the form

$%+...+m12)_$}2)+1 _

For brevity we introduce the notation
Qx)=er2? +- - +epzi_, & =---

so that the equation of the hyperquadric can be written

Q(z) — z,Tni1 = 0.



Theorem 2. Every even-dimensional real hyperquadric is orientable. An odd-

dimensional real hyperquadric is orientable only when it is a hypersphere.

Proof. We take the points p(0,---,0,1,0) and p’(0,--- ,0, 1) on the hyperquadric, and
denote by m and 7’ the tangent hyperplanes at these points. Then each of the sets ¥ — (7X)
and ¥ — (n'Y) is an open cell of dimension n — 1. For take a hyperplane 7 not through p;
by projection from p, ¥ — (X)) is mapped topologically onto 7 — (w7), which is an open cell
of dimension n — 1.

In the set X — (X} — (7'%) we have z, # 0,%, 11 # 0. We can therefore put z,1 =1,
so that =, = Q(z). As the local coordinates in the cells ¥ — (7 X) and £ — (#'X) it is possible

to take xy,- -,y and },--- ,x},_;, where
.
! Q(;')’ =1,-+- ,n-1
It remains to evaluate the Jacobian
A — B(mll’ T 7m'ln—1
6(:1;17 e 73:”—1)
which is equal to the determinant
2 1
4 — KQ(J') T1To e T1%p 1
1
oyl ... 1 ,
(=2)"Per - en TaTy 3~ —Q(z) - TyTm_1
[Q(=))2( =) .. 262
1
Tn—-1T1 Tp-12T2 m%_l ) Q(-T)
- En—1
A simple expansion gives
A= -1
Q)"

Therefore A keeps a constant sign when and only when n — 1 is even or n — 1 is odd all

terms of Q(z) have the same sign. This proves the theorem.
References

[1) We shall denote by M N the intersection of the sets M and N.
[2] So far as the writers are aware, this theorem was first established by C. Ehresmann, by means of
the theory of Lie groups; ef. C. Ehresmann, Sur la topologie de certaines variétés algébriques

réelles, Jour. de Math. 16, 73-75 (1937).



Pseudomanifold and Manifold Homotopy Groupsv

YUHLIN Jou

Introduction

The homotopy groups of an arcwise connected topological space were first defined by
W. Hurewicz?.

Later in a paper written with N. E. Steenrod(!!] the definition and a few theorems of
the relative homotopy groups of a space modulo a subset were given. Independently both
B. Eckmann® and J. H. Whitehead[!'¥ introduced the same groups in their investigations
on fibre spaces. In a recent work of A. L. Blakers and W. S. Massey!? the triad homotopy
groups of a space relative to two of its subsets had been discussed.

In the study of spherical mappings in a metric space, M. Abel!l and S.T. Hul®! char-
acterized algebraically the structures of the Abe groups and the abhomotopy groups re-
spectively. In order to study the Whitehead product!*3] of the ordinary homotopy groups,
R. H. Fox[® constructed for each 7 > 1 a group 7, called the r-dimensional trous homo-
topy group which has the following interesting properties: (A) Every ordinary homotopy
group of dimension less than r + 1 can be mapped isomorphically into the group 7,. (B)

m+n-1 js the Whitehead product of every pair of elements aen™, Sen™ and

If v=c«-Ger
m+n—1 > r, then the isomorphisms 7™ — 7., 7" — 7,,7™*t""! — 7, can be so
chosen that « — &, 8 — 8,y — yand y =afa ! §1.

The object of this paper is to generalize and unify various homotopy groups, such as
the torus homotopy groups, abhomotopy groups, Abe groups and ordinary homotopy groups
of an arcwise connected topological space. For every closed orientable pseudomanifold M
and every positive integer n, we shall define a group 7},(Y) and call it the n-th pseudo-
manifold M-homotopy group of the space Y. The principal results are the following two
generalizations of Fox’s work.

(1) If M is an m-dimensional closed orientable manifold M having the property that
the topological product M x E* of the manifold M and a k-cell E* can be imbedded into
the Euclidean (m + k)-space R™**, then the (m + n)-dimensional ordinary homotopy group
™™ (Y) is isomorphic to a subgroup of the n-th manifold homotopy group 73,(Y) of Y

for every n > k (85).

1) The author is deeply grateful to Prof. T.H. Kiang, Prof. H.F. Tuan, Mr. Y.F. Sun, Mr. L. Ma and
Mr. C, Chen for their encouragement and many helpful suggestions.

2) Hurewicz, [1(]. The number in bracket refers to the bibliography at the end of the paper.



(2) A product, - Ber 2 5L (V) for any aer Rl L (V) and Bengit (Y) is defined which
generalizes the Whitehead product for three arbitrary closed orientable pseudomanifolds
K,H,L (86). The isomorphisms ¢ : 72FL (V) — mm gawrxmxrn{Y), @ 7L (V) —
s xgnsir (V) a0d B 5 mRFEL (V) — Thonscsusocarns (V) can be so chosen (§7)
that

pla-B8) = p(a)¢ (B)p(a™ )" (B71).

Parallel results are obtained for relative and triad pseudomanifold homotopy groups.

The pseudomanifold homotopy groups are defined as usual by an group operation in-
troduced between the homiotopy classes of mappings (§1). Perhaps it would be much better
to introduce a lot of antecedents in defining the pseudomanifold homotopy groups. In fact,-
the proof of the theorems would be simplified by the choice of suitable antecedents. But it
is difficult to get an antecedent which would be convenient for the whole homotopy theory.

The absolute and relative pseudomanifold homotopy groups have many pfopertieé which
are the analogues of the familiar properties of the ordinary homotopy groups of spaces. The
groups of different base points form a system of local groups (§2). An exact M-homotopy
sequence is constituted by the totality of the absolute and relative M-homotopy groups for
a given M of a space Y and its subset Yy together with the homeomorphisms induced by
the inclusion mappings and the so-called boundary operation (§3).

As a matter of fact, a pseudomanifold homotopy groups of a space Y can be regarded
as the fundamental group of a certain mapping space of Y. Generally, a pseundomanifold
homotopy group may also be considered as certain pseudomanifold homotopy group of a
mapping space (§4).

In addition to the imbeddings of the ordinary-homotopy groups into the manifold ho-
motopy groups, we prove that the n-th m-sphere-homotopy group is also imbeddable into
the manifold homotopy group 77 (Y) for n > k, where k is the integer mentioned before.
The theorems for the relative case follow immediately from the properties of mapping spaces
and the theorems for the absolute case (§5).

As an application of group multiplication and its commutator representation, the (5™ x
-+« x 8™ x M)-homotopy groups are algebraically determined by the various M-homotopy
groups and the product defined on them corresponding to K = M and H, L being single
points (§8).

It is clear that the M-homodtopy groups 7} (Y} reduce to the ordinary homotopy groups
7™ (Y) when M is a single point. This becomes the Abe group k.(Y) if we take n = 1 and
M = 5"~!. The (n,r)-th abhomotopy group k7 (Y} is isomorphic to the (r+1)-th (n—r —1)-
sphere-homotopy group for any n > 7 > 1. Further the r-dimensional torus homotopy group
7-(Y) is a pseudomanifold homotopy group for » = 1 and M is an (r — 1)-dimensional torus
(§9).

In this paper the theories of the absolute and relative pseudomanifold homotopy groups

are carried forward paralielly. But the triad pseudomaniflod homotopy groups are studied
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separately (§10). The analogous properties to the absolutes and relative cases are easily

found.
1. The absolute and relative pseudomaniflod homotopy groups

In this section, the definitions of the absolute and relative pseudomanifold homotopy
groups are given.

Let us consider in the Euclidean n-space, the n-cell E™ defined by
22 4. +22 <1

Let S™~! be the boundary of E™; E}, E} the subsets of E™ defined by =, > 0, z, < 0 and
Q7 1,Q3 ! the subsets of S*~! defined by z, > 0,z, < 0 respectively. Denote by o the
north pole (1,0,---,0) of S™~!. Construct the topological product of the n-cell E™ and any
closed orientable pseudomanifold M with a given orientation.

Let Y be an arcwise connected topological space, Yy an arcwise connected subset of Y
and o a given point of Y. By YX{X,,Yo; X’0,v0}[”) we denote the totality of mappings
f: X — Y such that f(zo) C Yo, f(X'0) = 7o and X'o C Xo C X. Consider the totality
YETXM {gn—1y M Yy; €0 X M, v0} of mappings f : E"x M — Y such that f(S™~'xM) C
Yy and f(ép X M) = 0. These mappings can be divided into homotopy classes as follows:
Two mappings f,g are said to be homotopic relative to {8™""! x M,Yo; &0 X M,vo} or
equivalent, if there exists a homotopy or a continuous family of mappings h; Y E"xM {s™1x
M,Yo; €0 X M,v},0 <t <1, such that kg = f,h; = g. In notation:

f=g rel. {S™' X M,Yo; & X M, v}

We shall denote by [f] the homotopy class in which the mapping f is contained and by 0
the constant mapping 0 (E™ x M) = .

Let f,geY E" XM {gn—1x M Yy; égx M,vo}. Consider the partial mapping fIS™ 1 xM.
There is a mapping fo : S*~ ' X M — Y such that fo(Q5F ™' x M) =1, and

fo= FIST P x M rel. {S™' x M,Yo; & X M,v0}.
In fact, it is easy to construct a deformation 6, : S*~1 — Sn—1 0 < t < 1; such that
5o =identity, 8;(Q}™ ') = £o, 62(€0) = & and 6(Q7!) C Q7 '. Define a deformation

8 : 8" 71 x M — S™~1 x M by taking

67(&,p) = (6:(8), p), €eS™', peM.

clearly the homotopy féF : S*~! x M — Y, gives a mapping fo = f6; homotopic to
FIS™1 x M = fé&;.



Define a mapping f' : (Ef x M) U (5™ ! x M) — Y by taking

f'—{fo on S™lx M
"l on EFxM.

Similarly, it can be verified that

F (B xM)U(S™ x M) rel. {S™! x M,Yo; o x M, 70}

Since (E3 x M) U (S™ ! x M) is a closed subpolyhedron of E® x M, it has the homotopy
extension property in E™ X M relative to any Y. So f’ has an extension f* : E" xM —Y
such that f*(E5 x M) = v and

f*gf rel. {Sn_l XM,Y(); Eo XM,’)’()}.
Similarly, there is a mapping g* : E® x M — Y such that ¢*(E} X M) =7

g* =g rel. {S"!' x M,Ys; & x M, v}

Now we define a mapping weY F" XM {S"~1 x M, Yo; & X M,~o} by taking

_{f* on Ef x M,
= g* on B} x M.

It can be proved that the class [¢] depends only on the classes [f] and [g]. We define

It can be seen that the operation + has all the properties of a group operation but is not
necessarily commutative. For the non-commutative case, we shall write multiplicatively. the
neutral element is the class [0]; and the inverse of [f] is the class [f6] where § : E" x M —
E™ x M is defined by 8(n,p) = (7, p) for neE™,pecM with 7 the mirror image of 7 in the
hyperplane z,, = 0. '

The group 7% (Y, Y0,7),n > 2, obtained in this way is called the nth relative pseudo-
manitold M -homotopy group of Y modulo Yy with vy as the base point or simply the n-th
relative M -homotopy group.

If n > 1,Y, = 7o, the group is called the n-th (absolute) pscudomanifold M-homotopy
group of Y with o as the base point or simple the n-th M-homotopy group. the sym-
bol 73(Y, Y0, 70) may be abridged as .TFR/‘,(Y, v0). the n-th absolute M-homotopy group
7% (Y,v0) may be regarded as the group of the homotopy classes rel. {£ x M, Yo} of
mappings in Y5 " *M ¢, x M, v}

As a consequence of the definition, we have the following.



Theorem. The n-th relative M-homotopy group 7y (Y, Yo, v0) is abelian if n > 3
and the n-th (absolute) M-homotopy group ©h(Y,v0) is abelian if n > 2. The groups
72 (Y, Yo,7) and 7}3,(Y,v0) are in general non-abelian.

The theorem is true since we may rotate E" continuously keeping S™ ! on itself and
&o fixed, until ET and E7} are interchanged if n > 3 for the relative M-homotopy group;
and we may rotate S™ continuously keeping &, fixed until Q7 and Q% are interchanged if
n > 2, for the absolute one.

As a general rule, any regularly connected finite polyhedron X together with its con-
nected subsets X'y, Xo, for which there is an onto mapping w : X — E™ such that w is a
homeomorphism between X — X' and E™ — &y, may be taken to be the antecedent for defin-
ing the relative M-homotopy group. Denote Xo = w™!(S™"!) and then X'y C Xo C X.
Consider the totality of mappings in Y X*M{ X, x M, Yy; X{ x M, ;70}- The group operation
is defined by taking X; = w1 (ET), Xy = w™ ' (EY) instead of ET,EY,.

A group thus obtained is clearly isomorphic to 7, (Y, Yo, 70).

For the absolute M-homotopy group, the regularly connected finite polyhedron X to-
gether with its connected subset X, may be taken as the antecedent, if there exists an
onto mapping w : X — S™ which maps X — X, homeomorphically onto S™ — & with
Xo = w™'(&). A group operation can be defined in order to get the group 7}, (Y,v) on
the classes of mappings in YX*M { X, x M, v} by taking X; = 0w~ (Q}), X2 = w1 (Q})
instead of Q7,, Q3.

Consider the n-cube E™ defined by 0 < z; < 1,i = 1,--- ,n, in an Euclidean n-space.
Denote by E™ the boundary of E™ and by J"~! = E™ — En~! the set (1 — 21) [[;, #:(1 —
z;) = 0 where E"~! is defined by ; = 0. Let E}, E} denote the subsets of E™ defined by
Ty > %,mn < % The relative M-homotopy group 7«7, (Y, Y5, v0) can be obtained by taking
Jn1 ¢ E™ C E™ as an antecedent and by considering the mappings in YEUXM{E" X
M,Yy; J" 1 x M,v}. When n > 1,Yy = 79, the group 73 (Y,~) may be obtained by
taking E™ C E™ as antecedent.

Let C™ for n > 2 denote the subset of E™*! defined by the condition H?:; z(l—z;) =
0. Let A : E® — C™ be a mapping described as follows. Denote by P, @Q; the subsets
of E®,C™ given by x; = t.p; is an (n — 1)-cube and Q¢ is an (n — 1)-sphere. Let A map
P, onto @Q; with degree one in such a way that the boundary of P, is mapped on the point
(¢,0,---,0)eQ;. Let L be the subset of C* defined by z; = 0,¢ = 2,--- ,n + 1. Taking
(QiUL) C(QoUQ,UL) C C™ as antecedent and considering the totality of mappings in
YC"XM{QO x M,Yy; (Q1 U L) x M,v}, we have also the group 7} (Y, Yo, o).

Identify the subset & x M of the topological product S™ x M to a single point zq
to form the pinched topological product X7%,. Similarly, we can divide the mappings in
Y XM {x9,70} into homotopy classes relative to {zo,v0} and define a group operation se

that the absolute M-homotopy group #’5,(Y, 7o) thus obtained is the same as before.



