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Interaction Between Lattice Theoretical Property
of Range and L — fuzzy Topological Spaces”

Yingming Liu and Maokang Luo
Institute of Mathematics, Sichuan Union University, Chengdu, 610064, China

Abstract Based on L — fuzzy set theory, many propositions in L - fuzzy topology are
enevitably related to the lattice theoretical properties of the range L. Besides those
L — fuzzy topological propositions which take some lattice theoretical properties of
the range as nesessary conditions, there are some other more interesting ones
(sometimes include generalized analytical propositions) which are equivalent to
some lattice theoretical properties. These connections in the form of “sufficient and
necessary conditions” more exactly reflect the close internal relationship between
structure of lattices and L — fuzzy topology or generalized analysis. In this paper,
some of L — fuzzy topological and generalized analytical propositions in this type will
be established and be proved.

Keywords Lattice, L — fuzzy Topology, Analysis, Lattics Theoretical Property, L — fuzzy
Topological Proposition

1.Preliminaries

In the sequel, X always stands for a non — empty ordinary set and L for a complete lat-
tice. A completely distributive lattice L with an ordering — reversing involution’: L — L is
called a fuzzy lattice. The smallest element and the largest element of a lattice L, if exist, are
denoted by 0; and 1;, or 0 and 1 for short, respectively. Call every mapping from X to L an
L - fuzzy subset on X . Denote the family of all the L — fuzzy subsets on X by L*. For every
a €L, let a denote the constant mapping from X to L with value a.

Note that the partial order <on L naturally induces a pointwise order<<on LX as follows:
For every pair U, VE L%,

UL VeVYr e X,U(x) < V(x).

This order is also a partial order, and it makes L* to be a fuzzy lattice.

1.1 Definition VY a, € L such that a <b, denote

Aa=1{b€EL:b>al,va=1b€ L:b<al,la,b]l=1c€L:a<c<bl.

a € L is called join — irreducible, if for every two a, b€ L,

* Project supported by the National Natural Science Foundation of China, the Science Fundation of the State Education

Commission of China and the Mathematical Center of the State Eduction Commission of China.
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a<laV b»a<aora<b;
every non — zero join — irreducible element is called a molecule . For every ACCL, denote the set
of all the molecules contained in A by M(A).

Note that for a non — empty ordinary set X, a fuzzy lattice L and an L — fuzzy subset A €
L, according to the symbol defined above, ¥ A is the set of all the elements in L* smaller
than A. So the set of all the molecules of L* smaller than A is just

M(VA) =1{z:x € X,2 € M(L), A < A(z)}

1.2 Definition Let L be a fuzzy lattice. §C L* is called an L — fuzzy topology on X, if
0 is closed under arbitrary joins and finite meets; especially, 0,1€ &, Call (L*,8) an L -
Sfuzzy topological space, or call it an L — fts for short. Every U € § is called an open subset in
(L*, ), and every P€ L¥ such that P' € § is called a closed subset in (LX, &). Denote the
family of all the closed subsets in(L*, 8)by 8.

For every L — fts(LX, §),denote [8]={UCX: xu €61, where yy : X—1{0,11CL is
the characteristic function of UC X on X call the ordinary topological space (X, [8]) the
background space of (L*, 8).

1.3 Definition Let(L*, 8)be an L - fts, A € L*X. Define respectively the interior A° and
the closure A of A as

A=V IU€ s USAILLA=AN|PE&:P=>A}.

1.4 Definition Define a relation <on L as follows: For every two a, b€ L, b6<a if
and only if for every CCCL such that V C==a, there exists ¢ € C such that 4<c¢. Denote
Bla)=1{6€L: b<al.Every subset DCB(a) satisfying VD= a is called a minimal set of
ain L.

1.5 Theorem!® 512131 [ [ e o complete lattice. Then the following conditions are
equivalent ;

(1) - L is completely distributive .

(ii)  Every element of L has a minimal set .

(iii) Every element of L has a minimal set consisting of molecules in L . _

1.6 Corollary  Ewvery element in a completely distributive lattice can represented as a

join of molecules .

2.Complete Distribitivity of Range and Analytical Property, Topological Property
of Spaces

2.1 Definition Let L be a complete lattice. The topologies on L generated respectively
by subbases{ L \ 2 a:a€L},{L\ Ya:a€L}land {L\ [a;b5]:a,6EL,a<b}are called
respectively the upper topology, the lower topology and the interval topology of L, and de-
note them respectively by 2" (L), 2, (L) and 2(L). Also denote respectively these topolo-
gieson L by 27, 2, and 2 for short.

2.2 Definition Let (X, T) be an ordinary topological space, L a complete lattice. A

mapping f: X — L is called respcetively upper semicontinuous, lower semicontinuous and
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continuous, if f is respectively continuous for the topologies 2", {2, and Q2.

2.3 Proposition Let (X, T) be a topological space, L a complete lattice. Then a map-
ping f: XL is continuous if and only if f is both upper semicontinuous and lower semicon-
tinuous .

2.4 Definition Denote the category of topological spaces and continuous mappings by
Top.

Shorten respectively the phrases “upper semicontinuous,” “lower semicontinuous” and
“continuous” by “u.s.c.”, “l.s.c.”and “c.”. For a complete lattice L, let (US), (LS) and
(CT) denote the following three conditions respectively:

(X, T)EOb(Top), A€ L*isu.s.c.=For every x € X and every neighborhood base B of x,

A(zx)= U/E\Byé/UA(y') ;
(X, T)E Ob(Top), A€ LXisl.s.c.=>For every x € X and every neighborhood base B of z,
A(x)= U\éﬁyé\UA(y) ;
(X, T)EOb(Top), AEL¥isc. =For every x€ X and every neighborhood base T of z,
A(x) - U/éByyUA(Y) - U\G/Byé\UA(Y) ;

clearly, (US) + (LS)=>(CT), but the converse is in general false.

2.5 Theorem Ewvery completely distributive lattice L satisfies both conditions (US) and
(LS).

2.6 Theorem let (X, T)E Ob(Top), L a complete lattice. Then for every two map-
pings A, B: X — L the following conclusions hold :

(1) If for every x € X there exists a family B (x) of neighborhoods (need not be a
neighborhood base) of x such that A(xz) = A yesiz)V,evA(Y), then A is upper
semicontinuous .

(ii)  If for every x € X there exists a family B(x) of neighborhoods ( need not be a
neighborhood base) of x such that A(x)= V yen() N yevA(y), then A is lower
semicontinuous .

(iii) If for every x € X there exists a neighborhood base B(x) of x such that B(x) =

Aye B, V,cuvA(y), then B is upper semicontinuous .

(iv) If for every x € X there exists a neighborhood baseB(x) of x such that B(x) =
Vyes N, e uvA(y), then B is lower semicontinuous .

Then we have the following connection between the complete distributivity of ranges and
some analytical properties of topological spaces:

2.7 Theorem Let L be a distributive complete lattice. Then the following conditions
are equualent :

(i) L is completely distributive .

(ii) L satisfies both conditions (US) and (LS).

Now we turn to a generalization of ordinary staircase functions in tdpological spaces:

2.8 Definition Let (X, T) be an ordinary topological space, L a complete lattice.
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For every a € L, U €T, denote

F.(a,U)=aU,F*(a,U)=aV yx\ v,

sth ((T)={F.(a,U):a €L, UETICLX,

stb* ([ (T)={F"(a,U):a €L, UET}ICLX,

stt o (T)={VA:ACsth,  (T)ICLX,

sie* ((T)=1VA;ACsth ™ (T CLX,
Call stb . [ (T) the staircase base associated with T, stb* [ (T) the staircase co — base associat-
ed with T, stz « (T) the staircase topology associated with T, stz *  (T) the staircase co —
topulogy associated with T.

Denote the family of all the lower semicontinuous mappings from. ( X, T) to L by
le (T), the family of all the upper semicontinuous mappings from (X, T) to L by uc, (T).

2.9 Proposition Let (X, T) be an ordinary topological space, L a complete lattice .
Then

(i) stt. (Tl (T).

Gi) st (T)Cuc (T).

2.10 Proposition Let (X, T) be an ordinary topological space, L a complete lattice, x
€ X, B a neighborhood base of x in X. Then

(i) A€stt, (T)=>A(z2) = Vyea,evA(y).

(i) A€sta™  (T)=A(x) = Ayes,evA(y).

Theorem 2.7 characterizes completely distributive law from an angle of analysis, then we
can consider the following conclusion as a topological way to do the same thing:

2.11 Theorem Let L be a distributive complete lattice. Then the following conditions
are equivalent ;

(1) L is completely distributive .

(ii)  For every ordinary topological space (X, T), lcy (T) C stt o (T), uc (T) C
stt X (T).

2.12 Remark In real analysis, as well — known, semicontinuous functions can be approx-
imated by staircase functions. Theorem 2.11 extends this result into the case of lattice. More-
over, this theorem tells us: As a value domain, a distributive complete lattice is completely dis-
tributive if and only if every semicontinuous mappings into it can be approximated by staircase
mappings. So Theorem 2.11 shows the special importance of completely distributive lattice in

topology on lattice.
3.Lattice Theoretical Property and L — fuzzy Topological Propositions
As a preparation, we introduce the concepts of lattice ~ valued weakly induced spaces and

lattice — valued induced spaces as follows:
3.1 Definition Let(L*, 8)be an L - fts. & or(Ly, &) is called L — valued weakly in-
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duced or weakly induced for short, if every U € & is a lower semicontinuous mapping from the
background space(X, [8])to L; is called L ~ walued stratified or stratified for short, if a €
&or every a € L; is called L ~ valued induced or induced for short, if (L%, &) is both weak-
ly induced and stratified.

3.2 Definition Let(LX, 8)be an L - fts, A, BE LX.

A and B are called separated, if

A"AB=AAB =0

A is called connected, if there not exist separated C, D € L* \ {0}such that A=CV D,
Call(L*, &) is connected, if the largest L — fuzzy subset 1 is connected.

3.3 Definition A lattice L is called anti — diamond — type, if there not exists a sublat-
tice of L which is isomorphic to the diamond — type lattice; i. e there not exist a, 8 € L \
{0,1} such thata A & = 0,a V b = 1.

Then we have the following results:

3.4 Theorem Let L be a fuzzy lattice. Then the following conditions are equivalent ;

(i) L is anti — diamond — type.

(ii) For every weakly induced L — fts(L%, 8), (L%, &) is connected if and only if (X,

[8])is connected .
(iii) For every induced L — fts(L*, &), (L%, &) is connected if and only if (X,[8])
is connected .

3.5 Definition Let(L*, 8)be an L - fts, A€ L%, Define the density dn(8) of(L%, 8)

dn(8)=min{|A|:A€L*, A~ =1}

The relation between the densities of an L — fuzzy product space and its coordinate spaces
is tightly combined with the property of their range just as the following theorem shows:

3.6 Theorem Let| (L%, 8,):t€ Tlbea family of L = fis”, (L%, &) their L — fuzzy
product space,1 € M(L),k=w. Then

(1) Ifdn(8,)=k for everyt € T, | T|<2", then dn(8)<k

(i) Ifdn(68,)<« for everyt €T, |T|>2%, then dn(8)<|T]|.

Since the following investigation involves classes, we need to generalize the concept of
mapping. Sure, it is just a parallel generalization;

3.7 Definition Let A, B be classes. Denote the class of all the ordered pairs (a, 6),
where a € A, b €B, by AXB. Similarly define A; X -+ X A, for finite number of classesA,,
A, A =Afori=1,, n, denote A; X -+ X A, by A". A subclass f of AX B is called a
general mapping from A to B, denoted by f: A—B, if for every a € A, there exists exactly
one b € B such that (a, )€ f. For every general mapping f from A to B and every a € A,
denote f(a) =10 if and only if (a,b)€ f.

3.8 Definition Denote the category of all cardinal numbers and all the order preserving

mappings among them by Card.
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Denote the category of all completely distributive lattices and all the complete lattice homo-
morphisms among them by CDL.
3.9 Theorem Let L be a fuzzy lattice. Then the following conditions are equivalent ;
(i) 1€M(L). ‘
(ii) There exist general mappings
[:0b(CDL)—Ob(Card), f:Ob(Card)*—-Ob(Card)
such that for every k=w, every family{(L*:,8,):t€ T} of L — fts’ with prop-
ertydn(0,) <« for every t € T , and their L — fuzzy product space (L%, ¢),
dn(8)<f(x,|TI,1(L)). '
3.10 Remark The preceding theorem is interesting. It tells us, without some certain lat-
tice theoretical property of the range, it is even impossible to find any mathematical result - no

matter what method will be used — on some relations, although they all hold in the crisp case.
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Some Considerations on Convergence of Filters
in A Lattice — Ordered Group "

Jian Yuan and Yang Xu
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Abstract In this paper we give a general definition of filters, and discuss the f — convergence
and f — convergence structure.

Keywords lattice ordered group, R - filter, f— convergence

1.Introduction and Notations

[t is well known that the Fuzzy Control and Network of Neurons play important roles in
Artificial Intelligence and Intelligent Control. The Control procedure is often represented by
language rules that different from the classical control. The classical stability theory is useless
here. The stability of intelligent control is still an open problem. The key to discuss this prob-
lem is how to characterize and analysis the control procedure by an appropriate mathematical
tool. For this reason, we introduce the analytical theory based on 1* — module. This paper con-
tinues the work in the papers[1,2]. The convergence structure on a lattice, especially on a lat-
tice — order group, is a very interesting goal to study. Many people_ devoted to do this work and
got some important results. There are some authors worthy to be mentioned. As is nearly al-
ways true in the field of lattice ordered groups, the research about ! — convergence follows a
path first trod by P. F. Conrad!®! and W.C. Holland!!*). The contributions of F. Papangelou'* %
and G.O.Kenny'®! have also been important. Some authors!”*?’ developed the topological con-

[3.10] employed the techniques of order — conver-

vergence on a lattice group while other authors
gence and Cauchy strucure for lattice ordered groups. As we know that filter plays a crucial role
in Set Theory, Lattice Theory and Logic. In this paper we give a general definition of filters,
and discuss the f — convergence and its Cauchy convergence structure. At first we give some
notations. Throughout this paper, G is a lattice group and L is a lattice. For a subset A of G
(or L).Let® and¥be collections of subsets of G(or L). For subsets A and B of ®, we define
AVB={zV y,xr€Aandy € B},

AANB=1{zxz Ay, xr € Aandy € B},

AB = {zy,x € Aand y € Bl and A™' = {27}, z € Al.

* Supported by the National Natural Science Foundation of China. No:69774016, 69674015.



